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Predgovor, posveta i sažetak na hrvatskom jeziku 

 

Predgovor i posveta 

 

Ova doktorska disertacija je za mene mnogo više od znanstvenog istraživanja. Ovo je bilo 

jedno putovanje, vođeno znanošću i radoznalošću, koje je započelo mnogo godina prije nego 

što sam bio primljen na doktorski studij na Ekonomskom sveučilištu u Splitu. Vrativši se u 

1996. godinu, upravo sam tijekom studija ekonomije u Dubrovniku upoznao umjetnost 

ekonometrije. U to vrijeme sam neprestano tražio konkretne odgovore na mnoga pitanja na 

području ekonomije nesluteći da se u meni jednim dijelom skriva „kvantitativac“. Vođen 

znatiželjom, podnio sam prijavu na sveučilištu Erasmus u Rotterdamu za diplomski studij 

ekonometrije i menadžmenta. Nekoliko mjeseci kasnije predao sam diplomski rad u 

Dubrovniku i ubrzo diplomirao na Ekonomiji. Po primitku diplome sveučilišta u Rotterdamu, 

započeo sam raditi u financijskoj industriji gdje sam kao mladi kvantitativac mogao primjeniti 

stečena znanja. Uz rad sam nastavio magistarski studij kvantitativnih financija na istom 

sveučilištu. Nakon magistarskog studija ekonometrije i menadžmenta bio sam u potpunosti 

opremljen najnovijim znanstvenim spoznajama iz područja kvantitativnih financija. Stečeno 

radno iskustvo u međunarodnim financijskim tvrtkama u Nizozemskoj odlučio sam primjeniti 

u Hrvatskoj gdje je moj akademski put i započeo. Profesionalnu karijeru nastavio sam u 

bankarskom sektoru kao menadžer korporativnih kreditnih rizika. Iako sam već imao nekoliko 

fakultetskih diploma, moja se žeđ za znanstvenim istraživanjima nije ugasila i tražio sam nove 

izazove. Ekonomski fakultet Sveučilišta u Splitu ponudio mi je mogućnost doktorskog studija 

na području kvantitativne ekonomije.  

 

Tijekom prve tri godine istraživačkog programa Ekonomskog fakulteta obogatio sam i proširio 

svoje znanje vrlo intenzivnim kolegijima iz područja ekonomije. Doktorski studij zahtijevao 

je visok stupanj predanosti, osobnu inicijativu i samostalno učenje, koje sam nastavio tijekom 

cijelog studija. Važno je spomenuti i neočekivani životni put koji me je već za vrijeme studija 

selio u sedam različitih gradova i dvije različite zemlje Europe. S obzirom da spomenute  

promjene mjesta studija, rada i samog boravka oduzimaju vrijeme, planirani put doktorskog 
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studija se odužio i dodao je novi i neočekivani izazov. Ipak sam uvijek sa sobom nosio svoje 

istraživanje i nastavljao gdje sam stao. 

 

Veoma sam zahvalan svom mentoru dr. sc. Josipu Arneriću na smjernicama i pruženoj 

mogućnosti provedbe doktorskog istraživanja o modelima volatilnosti finacijskog tržišta na 

temelju raspona i njihovoj primjeni u europskim burzama. Upravo zahvaljujući trudu dr. sc. 

Josipa Arnerića dobili smo pristup Reutersovoj intradnevnoj bazi podataka koja je postala 

osnova empirijskog istraživanja ovo rada. 

 

Posebno zahvaljujem svojoj supruzi koja me podržavala tijekom cijelog studija. Znam da ti 

nije uvijek bilo lako prihvatiti da slobodno vrijeme, uključujući i one dragocjene vikende, 

provodim radeći na svojoj disertaciji. Mnogo puta smo žrtvovali lijepe, ali i rijetke trenutke 

toplog i sunčanog vremena u Nizozemskoj da bih se posvetio svome radu. Svjestan sam da je 

u jednom trenutku i tebi postao izazov slušati priče o procjeni volatilnosti pomoću intradnevnih 

podataka. Na kraju, tvoja potpora i motivacija su one koje su me gurale naprijed i pomogle da 

svoj rad privedem kraju. Podržavala si me u najtežim trenucima mog života i nanovo me 

motivirala bezbroj puta, bez tvoje pomoći ovo ne bih ostvario. 
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Ovaj rad posvećujem svom sinu, Eliu, koji mi omogućuje da nanovo vidim kreativnosti 

svijeta i svojoj supruzi, Ireni, koja je moja prekrasna partnerica u pustolovini života. 
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SAŽETAK DOKTORSKE DISERTACIJE 

Ova disertacija istražuje opažanja intradnevnih cijena šest izranjajućih europskih dioničkih 

tržišta te empirijskom analizom istražuje učinkovitost rasponskih procjenitelja volatilnosti.  

Teorija realizirane volatilnosti koristi intradnevne podatke za procjenu integrirane volatilnosti. 

Međutim, realizirana volatilnost je često pristrana zbog raznih mikrostrukturnih efekata. 

Glavni procjenitelj u ovom radu je nepristrani procjenitelj integrirane volatilnosti koji 

procjenjuje volatilnost u dvije „faze“, te se razlikuje od realizirane volatilnosti. U radu se 

koristi skraćenica engleskog naziva „Two Times Scale Estimator“, odnosno TTSE, kako bi se 

označio nepristrani procjenitelj integrirane volatilnosti. Za svaki od šest burzovnih indeksa 

određen je odgovarajuć i asimptotski nepristran procjenitelj integrirane volatilnosti koristeći 

TTSE procjenitelj na bazi tržišnih cijena promatranih visokom intradnevnom frekvencijom. 

Bitno je naglasiti da sama opažanja intradnevnih cijena pružaju dodatan i veoma vrijedan uvid 

u cjenovne promjene tijekom sati trgovanja na burzi. Međutim, postoje određena ograničenja 

kod široke primjene u cijeloj financijskoj industriji budući da intradnevni podaci nisu uvijek 

dostupni za svako tržište odnosno za svaki financijski instrument. Razlozi potonjeg variraju od 

ograničenih podataka do nelikvidnih tržišta. Kao razumnu alternativu za razne primjene u 

području financija, ova disertacija sugerira korištenje rasponske procjenitelje volatilnosti koji 

koriste samo ograničen broj opažanja intradnevnih cijena, tj. cijena otvaranja, najviša cijena, 

najniža cijena i cijena zatvaranja tijekom dana trgovanja. U radu se koristi skraćenica 

engleskog naziva „open, high, low, close” (OHLC).  

 

Standardni rasponski procjenitelji volatilnosti ne uzimaju u obzir informaciju koja se promatra 

van standardnih sati trgovanja. Promjene u cijenama koje se realiziraju van standardnih sati 

trovanja nazivaju se „prekonoćnim skokovima“. Prekonoćni skokovi u cijenama promatraju se 

kao razlika između početne cijena trenutnog dana i završne cijene prethodnog dana. U radu su 

standardni rasponski procjenitelji obogaćeni prekonoćnim skokovima te s ovim rad doprinosi 

već bogatoj literaturi o procjeniteljima financijske volatilnosti. Drugi dio ovog rada 

usredotočen je na izazov rangiranja rezultata procjenitelja volatilnosti. Koliko je autoru ovog 

rada poznato, literatura nije bila jednoglasna u metodologiji rangiranja ovih procjenitelja, te 

smatra da metoda rangiranja uvelike utječe na konačan optimalan izbor procjenitelja. Ovo 
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istraživanje uspoređuje nekoliko metodologija rangiranja te nastoji ponuditi smjernice u izboru 

metodologije rangiranja s obzirom na svoju svrhu. Postojeće metodologije rangiranja (kao što 

su funkcija gubitka, koeficijent učinkovitosti i Mincer Zarnowitzeva regresija) usredotočene 

su na cjelokupnu statističku raspodjelu, dok su ekstremne promjene u volatilnosti cijena često 

nedovoljno pokrivene. Ovo istraživanje koristi koeficijent gornje ovisnosti repa (eng. „upper 

tail-dependence“), koji je rezultat Gumbelove Copula funkcije, za svrhe usporedbe kada su 

fokus interesa upravo sami repovi raspodjele. Zavisnost u gornjem dijelu repa raspodjele 

smatra se komplementarnom metodologijom rangiranja koja uz standardnu funkciju gubitka 

ili uz pristup koeficijenta učinkovitosti, upotpunjava analizu rangiranja procjenitelja 

volatilnosti. Rezultati pokazuju da su modeli volatilnosti na bazi raspona prikladne alternative 

procjenitelju TTSE i da ni standardna devijacija ni dnevni kvadratni prinos, koji se među 

standardnim rasponskim procjeniteljima volatilnost smatraju najpopularnijim, nisu odabrani u 

bilo kojoj metodologiji rangiranja. Među izabranim rasponskim procjeniteljima volatilnosti su 

Parkinson, Garman-Klass, High-Low, Roger-Satchell te Yang-Zhang. Optimalan model 

rasponske volatilnosti ovisi o primjenjenoj metodi rangiranja, odnosno o samoj primjeni u 

praksi. 

 

Ključne riječi: Integrirana volatilnost, realizirana varijanca, rasponski procjenitelji 

volatilnosti, OHLC, funkcija gubitaka, koeficijent efikasnosti, izranjajuće dioničko tržište. 
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Foreword, dedication and Summary in English 

 

Foreword and dedication  

 

This PhD study has been much more than a scientific research on its own. It has been a journey 

driven by science and curiosity that has started many years before I was accepted as a PhD 

candidate at the Economic University of Split. Going back to 1996, it was during the study of 

Economics in Dubrovnik that I became acquainted with the art of Econometrics. Back then I 

didn’t know yet that there was a hidden “math personality” in me as I was continuously 

searching for concrete answers to the many questions that were asked in the field of Economics. 

Beaten by my curiosity I submitted an application at the Erasmus University in Rotterdam for 

a Bachelors in Econometrics and Management Science. This happened even before graduating 

at the Economic Faculty in Dubrovnik. A few months later I submitted my Thesis in Dubrovnik 

and graduated soon in Economics, but was even more fascinated with the exact science that I 

was given the opportunity to master. After receiving my Bachelor I started working in the 

financial industry where I, as a young Quant, applied the learned knowledge directly in the 

field. Alongside I continued with a subsequent Master’s study in Quantitative Finance at the 

same University. After receiving my Master’s degree in Econometrics and Management 

Science I was fully equipped with the most recent scientific knowledge in the field of 

quantitative finance. Together with the gained working experience in international financial 

companies in the Netherlands I decided to test my knowledge and experience back in Croatia 

where it all started. I continued my professional career in a retail bank as a Risk Manager. 

Although I already had several University degrees, my thirst for scientific studies didn’t 

quench. I became even more curious and was seeking for a new challenge in life. The Faculty 

of Economics at the University of Split offered me the opportunity for a PhD study in 

Economics. This life time opportunity at this University was a challenge I gladly accepted.  

 

During the first three years of the research-intensive program at the Faculty of Economics I 
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have enriched and broadened my knowledge with various highly intensive courses in the field 

of Economics. The PhD program required a high degree of commitment, personal initiative 

and self-directed learning, which I have continued during the entire study. Important to 

mention was an unexpected life changing development, which has forced me to move in seven 

different cities and two different countries across Europe during my study. This time 

consuming process has delayed the planned progress sincerely and has added a new and 

unexpected challenge in the study. Nevertheless I have always carried my research with me 

and continued from where I stopped. 

 

I am heavily indebted to my promoter and supervisor, Josip Arnerić, for his guidance and for 

giving me the opportunity to conduct the PhD research on range-based financial market 

volatility models and their application in European stock markets. It was thanks to his effort 

that we gained access to the Reuters intraday database, which has become the basis for the 

empirical research provided in this work.  

 

I would like to specially thank my wife who supported me throughout the study. I know it 

wasn’t always easy for you knowing that I would spend our free time, including those precious 

weekends, working on my Thesis. Many times we have traded in those beautiful, yet rare 

moments of warm and sunny weather in the Netherlands for this Thesis. I also know that at 

some point it became a challenge for you as well to listen to the stories about estimating 

volatility using intraday data. In the end, it was your support and motivation that kept me going 

and finalizing this work. You have supported me during the toughest moments in my life and 

motivated me for countless times. Without your help this wouldn’t have succeeded.  
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I dedicate this work to my son, Elio, who enables me to see the creativities of the world anew 

and to my wife, Irena, who is my beautiful partner in the adventure of life. 
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SUMMARY OF THE THESIS 

This Thesis investigates intraday price observations for six European emerging stock markets 

and explores the effectiveness of range-based volatility estimators with an empirical analysis. 

The theory of Realized Volatility utilizes intraday data to estimate the integrated volatility. 

However, Realized Volatility is often biased due to microstructure noise. The Two Times Scale 

Estimator is an unbiased estimator of the integrated volatility.  

 

For each of the indices a consistent and asymptotically unbiased estimator of the integrated 

volatility is determined using intraday price observations and the Two Times Scale Estimator. 

As intraday price observations provide additional insight in the price changes during trading 

hours, it also has limitations in industry wide applicability as intraday data is not always 

available. The reasons can vary, from restricted data to illiquid markets. As a reasonable 

alternative for many applications in finance this Thesis suggest the use of range-based volatility 

estimators that utilize only a limited number of intraday price observations, i.e. the Open, High, 

Low and Close price observations. The standard range-based volatility estimators are extended 

with the information captured in overnight jumps and contribute to the already rich literature 

on financial volatility.  

 

The second part of this Thesis focuses on the challenge of ranking the results. As far as we are 

aware the literature had not been unanimous on the ranking methodology. This research 

compares several ranking methodologies and attempts to provide more guidelines in the choice 

of the ranking methodology given its purpose. The existing ranking methodologies (loss 

functions, coefficient of efficiency and the Mincer Zarnowitz regression) focus on an overall 

fit, while the extreme movements are often insufficiently covered. This research employs the 

upper tail dependence coefficient, a result of the Gumbel copula function, for comparison 

purposes when the focus of interest are the tails of the distribution. The upper tail dependence 

is a complementary ranking methodology to the standard loss functions or coefficient of 

efficiency approach.  
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The results show that range-based volatility models are appropriate alternatives to the Two 

Times Scale Estimator and that the neither the standard deviation nor the daily squared return 

have been selected in any of the ranking methodologies. 

 

Keywords: Integrated volatility, Realized variance, range-based volatility estimator, OHLC, 

Loss function, Coefficient of Efficiency, Upper tail dependence, emerging market. 
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“Financial volatility is unobservable. Only the realized changes in asset returns convey some 

information about what volatility actually is” (Knight, J. and Satchell, S., 2007). 
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MOTIVATION 

Volatility of financial markets is a key element in financial modelling and forecasting. It is 

commonly referred to as a measure of risk or a measure that represents risk. The risk usually 

increases with the volatility, i.e. the higher the volatility, the higher is the perception of risk in 

the model. Volatility itself is not a variable that van be observed and therefore requires a 

methodology to quantify it. The information that is captured in the realized price changes in 

asset returns convey valuable information about the volatility. Many models in the literature 

utilize this price information to determine the volatility. There are many models to choose 

from, yet the differences in performance between these models can be significant. The 

consequence of a wrong choice could adversely affect the financial model or the forecast and, 

hence, the decisions based upon these results. Therefore the choice of the volatility model is 

of key importance for financial modelling and has been a key topic in scientific research in the 

past decades.  

 

The existing financial literature has developed a vast amount of models for quantifying 

volatility, which range from realized volatility models to GARCH-like models. However, for 

as far we are aware of, the literature has not been successful in being unanimous on the optimal 

volatility model or the methodology of ranking these models. The consequence is that there 

are no guidelines for practitioners when choosing the most appropriate model from a large set 

of available models. Recent market developments that have marked the availability of high 

frequency intraday data, for instance when price changes are observed with a frequency of a 

second, have also contributed to an increase in new volatility models in the literature. The 

availability of high frequency intraday data made it possible to answer questions on intraday 

price movements for a vast number of securities across different markets and asset classes. 

This development has given a boost to the theory of realized volatility, which states that an 

important result of properly using the available intraday data can result in an unbiased estimator 

of the true volatility.  

 

An important downside of working with high frequency data are the numerous challenges with 

high frequency data, which in some cases may limit the usability of the theory of realized 
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volatility. For instance, high frequency data is only available for markets and asset classes that 

have intraday trading activities. Hence, it is not possible to calculate the realized volatility for 

illiquid asset classes. The applicability of intraday price information for modelling purposes 

depends not only on the existence of intraday trading activities, but also on their volume and 

liquidity. In this context many Emerging markets have been lacking behind the facts compared 

to their Western counterparts. The volume of intraday trades can be simply insufficient for 

model usage. As a result, volatility models that utilize high frequency price information of a 

particular market or industry are limited by the availability and quality, measured by its volume 

and liquidity, of the required intraday data. Another limitation is that high frequency data also 

includes working with extensive datasets that may require state of the art data crunching 

challenges. Although this is not strictly impossible, having the recent technological 

developments in scope, it remains reasonable to take the cost-effectiveness of this additional, 

time-consuming effort into account.  

 

For the reasons outlined we find that volatility models that utilize the information extracted 

from low frequency datasets, for instance using a limited number of intraday price 

observations, offer certain advantages compared to those models that utilize information 

extracted from high frequency datasets. For instance, when analysing the price history of 

financial markets or asset classes with a poor intraday trading volume on the high frequency 

levels. In this case the theory of realized volatility would not be suitable to estimate the 

volatility as there is insufficient intraday price observation at the high frequency level. This is 

a common problem in many emerging markets and in less liquid asset classes. Also in many 

other cases one might consider using a more simplistic but efficient volatility model compared 

to the complex volatility models that utilize a vast amount of high frequency trades and require 

additional investigation time and a more complex model. 

 

A reasonable alternative to using complex volatility models based on high frequency intraday 
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data would be to use volatility estimates that are based on a limited number of intraday price 

observations that are at the same time widely available for a large set of asset classes and 

markets. Many of this type of volatility models have been developed in the mid-80s, but have 

been left in the shadow of the complex volatility models based on GARCH and the high 

frequency intraday price observations. This is somewhat justified as the application of these 

low frequency models has remained limited in the literature. It has also been noticed that the 

rich literature of GARCH models has left the simplistic volatility models in the shadow. As far 

as we are aware one of the main disadvantages of the literature on low frequency volatility 

models is that the efficiency comparison was theoretical as there was no proper benchmark to 

compare the results with. The availability of high frequency data made it possible to compare 

the performances of alternative volatility models with the unbiased volatility model in a back-

test situation.  

 

The results of the volatility models are compared against the benchmark, i.e. the unbiased 

intraday volatility estimator. The literature has mentioned several methods for ranking the 

volatility models, but has not been unanimous on the ranking methodology itself. We are also 

not aware of any guidelines for users on which ranking methodology to use and in which 

situation. For instance, one might be interested in a simple volatility model that has an overall 

good performance across the entire distribution or one might be interested in a simple volatility 

model that efficiently measures the volatility in the tails of the distribution. In most cases the 

ranking methodology doesn’t cover both questions and, hence, a combination of different 

ranking methodologies is required. 

 

The motivation of this Thesis is threefold. First this research focuses on estimating the unbiased 

volatility by utilizing high frequency intraday price observations and on finding the alternative 

volatility estimates that avoid the limitations and challenges of high frequency price 

observations when necessary. This research advocates models that utilize only a limited subset 

of the intraday interval without significant loss of efficiency in estimating the stock market 

volatility. The open, high, low and closing (OHLC) prices are available for a wide range of 

securities in multiple markets and asset classes, which is not always the case for high frequency 

data. This research paper proposes to use intraday prices from the OHLC prices dataset for 
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volatility estimation. Secondly, this research uses several ranking methodologies that have 

been previously used in the literature to rank the volatility models. This Thesis also suggests a 

new ranking methodology that is based on the tail correlation as a function from a Copula 

function to rank the volatility estimates based on their performance in the tail of the 

distribution. Thirdly, this research provides various financial applications where volatility 

models based on low frequency price observations are used to estimate the volatility. 
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1 INTRODUCTION 

 

1.1 Subject of the research  

This research analysis the performance of various range-based volatility estimators and 

compares the results against an unbiased benchmark estimator. The analysis consists of an 

empirical research, which is performed on a number of East European stock markets. The East 

European stock markets are represented by the main stock market indices of Bulgaria, Czech 

Republic, Croatia, Hungary, Poland and Romania. The historical data includes intraday price 

observations recorded at a 1-minute interval, which can be considered an extremely high 

frequency for the markets under consideration. The number of (intra-)daily trades in East 

European stock markets is, generally speaking, much less than those in the highly developed 

markets, where stock indices can often be observed on a tick-by-tick basis. For example, S&P 

500, Dow 30, NASDAQ, etc. The analysis is performed by comparing a representative subset 

of the universe of low frequency range-based volatility estimators that depend on, and are 

restricted to, a limited set of historical price observations as their main set of information. Low 

frequency models do not depend on a higher frequency of intraday price quotes (e.g. tick-by-

tick, 1 minute, etc.). Low frequency models depend on the widely available open, high, low 

and closing (OHLC) prices. Restricting the intraday price observations to the defined low 

frequency intraday prices ensures that the competing range based volatility estimators meet the 

parsimony criterion, which is of crucial importance when high frequency intraday price 

observations are not available. The parsimony criterion includes intraday price observations 

that are widely available for a vast range of securities and across a wide range of financial 

markets. This will not be the case for price observations at the very high frequency (e.g. tick-

by-tick, 1 minute, etc.) as many securities are not recorded at the very high frequency and many 

markets lack in trading liquidity to ensure (a sufficient number of) intraday trades at the very 

high frequency. A reasonable alternative would be to consider a range-based volatility 

estimator that utilizes only the OHLC price observations, which are widely available for a wide 

range of securities and markets. The remaining question is the choice of the range based 
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volatility estimator. The total set of competing range-based volatility estimators consists of 13 

models of which 7 models exclude overnight returns and 6 models include overnight returns. 

Overnight returns contain valuable price information when trading activities occur outside of 

the official trading hours. The overnight change in price can be observed as the difference 

between the previous day’s closing price and the next day’s opening price. It is therefore 

reasonable to expect a positive pay off by including the overnight price information in the 

volatility estimates.  

 

Following the existing theory on volatility estimation we find that an unbiased benchmark 

volatility model is based on a set of high frequency intraday price observations. The empirical 

comparison is performed with different ranking methodologies. The theory on ranking 

volatility estimates is not consistent in the methodology. Several different ranking 

methodologies are utilized in this research to compensate for any bias introduced due to 

dependence on one single ranking methodology. The loss function approach is a common 

ranking methodology that gives an overall idea of the best fit. This methodology, however, 

ignores the direction of the movements of the estimates, which can be of crucial importance 

for the risk management function. The linear correlation as a product of the linear regression 

implicitly includes the direction of the movement of the volatility estimates. For example, if 

the volatility estimates of the competing estimators would increase the sign of the direction 

would be positive, and negative otherwise.  When both volatility estimates, the competing one 

and the benchmark, move in the same direction the correlation would be positive and the other 

way around. Neither methodologies include non-linear correlation or focus on extreme events, 

which are often of major interest to risk nor asset management functions. An important product 

of Copula functions is the upper tail dependence measure, which estimates the precision of the 

extreme volatilities and takes the signs of the estimates into account. Copula functions are 

helpful when non-linear correlation exists and needs to be analysed. The latter is exactly the 

interest of a wide range of risk and asset management functions.  

1.2 Research objectives and hypothesis 

Volatility of financial prices can be estimated with high accuracy as the frequency of intraday 



 

         3 

returns increases, providing the preliminary conditions that the intraday returns are 

uncorrelated and continuous. In this case the high frequency, model-free, volatility estimators 

is then assumed to be an unbiased estimators of volatility. Volatility can also be estimated with 

alternative models that require less intraday price observations and are in general less complex 

to work with. Range-based volatility models that utilize low frequency intraday price 

observations can contribute to estimating volatility while depending on only a limited number 

of intraday price quotes. These models are expected to increase the efficiency of volatility 

estimates that are based on only a single daily observation (e.g. the squared daily return, 

standard deviation, etc.) by including more valuable intraday price information. At the same 

time these parsimonious models are expected to achieve a higher overall efficiency compared 

to volatility models that incorporate intraday price observations at the very high frequency. 

The overall efficiency is in this case referred to the effort that is required to estimate statistically 

acceptable volatility estimates. For example, one doesn’t need to gain access to costly and 

specialized data vendors that provide price observations at the very high frequency. High 

frequency databases contain an extensive number of observations and require data crunching 

challenges that can be avoided with volatility estimators that utilize low frequency data. Take 

for example high frequency data that is observed on a “tick-by-tick” basis. The number of 

observations would increase rapidly with the number of days required for the estimation and, 

of course, the number of securities for which a volatility estimate is required. Low-frequency 

range-based volatility models are, in general, also less complex to work with compared to high 

frequency volatility models. In most cases it can be easily calculated on an Excel spreadsheet 

while volatility models that incorporate intraday prices at the very high frequency might 

require more sophisticated software. The literature on range-based volatility estimators 

provides a wide range of estimators that can be used for estimating the volatility of financial 

assets. The choice of the range-based volatility estimator is essential for the precision of the 

estimated volatility and plays therefore a crucial role in various financial assessments like, for 

example, in risk management.  

 

The main Hypothesis of this research considers the integrated volatility as the ‘true’ volatility 

of stock indices. The integrated volatility is based on a continuous set of intraday price 

observations, which can be approximated by range-based volatility estimators.   
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H1: Range-based volatility estimators are appropriate models to estimate the ‘true’ volatility 

of stock indices.  

The ‘true’ volatility, also referred to as the Integrated Volatility, is estimated with a high-

frequency model-free volatility estimator. This model is considered unbiased and is used as a 

benchmark in this research. The alternative, range-based, volatility estimators that have a 

positive dependence with the ‘true’ volatility estimator can be considered appropriate to 

estimate the ‘true’ volatility. A set of range-based volatility estimators are tested against the 

benchmark volatility estimator.  

 

A wide range of research papers on ranking volatility estimates applies a loss function approach 

to gauge the overall precision. There are, however, many different loss functions to be found 

in the literature. Hansen and Lunde (2001), for example, ranked volatility forecasts with a wide 

range of loss functions and provided proof for a set of robust loss functions. This are the 

minimum squared error and the Q-like function. Loss functions give, however, a first 

impression of the ranking process as they focus on the overall precision of the volatility 

estimates. The linear correlation function as a result of the Mincer Zarnowitz regression 

provides information on the direction of the volatility estimates. As with the loss function 

approach, the linear correlation also provides a view on the overall precision of the volatility 

estimates. Similar to previous research on ranking volatility estimators (Lunde (2005) and 

Laurent, Rombouts and Violante (2009)) this research considers several loss functions to avoid 

selection bias. It, however, is not obvious which loss function is more appropriate for the 

evaluation of models, as discussed by Bollerslev, Engle and Nelson (1994) and Diebold and 

Lopez (1996). To avoid model selection bias this research proposes alternative methodologies 

for model selection. 

 

Three auxiliary hypothesis have been defined with the main hypothesis: 

 

H.1.1: Range-based volatility estimators are different from each other.  

It is important to show whether the set of range-based volatility estimators are indeed different 

from each other and in some sense unique. This means that each of the estimators has unique 
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properties, which can be leveraged to their advantage when estimating volatility. Following 

Floros (2009) descriptive statistics and graphical illustration of the results provide a first set of 

information that describe the statistical properties of the variables. The statistical properties 

like volatility clustering, platy-kurtosis and non-stationarity are of particular importance. The 

results of various ranking methodologies are used to show the differences or similarities 

between a set of range-based volatility estimators. 

 

H.1.2: The efficiency of classical range-based volatility estimators can be increased by 

including overnight returns.  

Overnight returns provide valuable price information outside of normal trading hours. Range-

based volatility estimators that don’t already include overnight returns in their model can be 

enriched with the available overnight price information. The research extends a set of classical 

range-based volatility estimators with overnight return data that proves to include important 

price information of the stock markets. The performance of these so called ‘extended’ range-

based volatility estimators are compared versus other range-based volatility estimators. The 

efficiency is determined based on the results of the ranking methodologies.  

 

H.1.3.: Range-based volatility estimators are less biased compared to the squared daily return 

or the standard deviation. 

The squared daily return and the standard deviation are one of the most popular volatility 

estimators that use (multiple) single daily observations to estimate the volatility. The distance 

between the estimates and the ‘true’ volatility estimator can be used for ranking against the 

range-based volatility estimators. The auxiliary hypothesis states that none of the range-based 

volatility estimators performs worse than the daily squared return or the standard deviation and 

thus suggests to use any of the range-based volatility estimators instead of the daily squared 

return or the standard deviation. 

 

H2: The dependence between the ‘true’ volatility and range-based volatility estimators is non-

linear and shows positive dependence in the tails of the distributions. 

An overall ranking methodology might show a good coverage between a range-based volatility 

estimator and the ‘true’ volatility, while the coverage during moments of high volatility might 
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be poor. The distribution of high volatility will be in the end of the tail, while the bulk of the 

volatility will show a much lower scale of volatility. A positive tail dependence between the 

range-based volatility estimator and the ‘true’ volatility provides evidence of the performance 

of the range-based volatility estimator during periods of high volatility. To proof that a range-

based volatility estimator performs good during periods of high volatility it is necessary to use 

a ranking methodology that can rank estimators for their performance in the (extreme) tail of 

the distribution. For estimating this hypothesis a new ranking methodology based on a Copula 

function approach is proposed. We argue that for a wide range of risk management functions 

the ability to include the extremes may be of higher interest then the overall precision of the 

volatility estimates. After all, extreme losses, bankruptcies and crises are driven by extreme 

events that are usually not captured. Loss functions could, for example, include a threshold to 

focus on the extreme movements. However, this approach requires the researcher to define the 

threshold and is therefore sensitive to the choice of the threshold. This research proposes a 

novel approach for ranking volatility estimates by applying an upper tail dependence measure 

to estimate the precision in the extremes. The upper tail dependence is a product of the copula 

approach that is used as a ranking quantity. The advantage of this approach is that there is no 

requirement for defining thresholds for when loss functions are used to measure the precision 

of the extremes. 

 

The primary research objective of this thesis is to find the most efficient low-frequency range-

based volatility models that utilize the open, high, low and closing intraday price observations 

for a respective set of East European stock indices. 

 

The secondary research objective is to show how these results can be applied in practice with 

a Value-at-Risk application using the .CRBX as an example and a portfolio optimization 

consisting of several stocks of the .CRBX index. 

1.3 Applied scientific research methodology 

The significance of volatility modelling can be found in a wide range of research, risk and 

investment functions. A vast amount of approaches to modelling volatility has been employed 
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in the recent literature. These approaches can be divided in models that consider volatility as 

an unobservable or an observable variable. The first group includes theories like GARCH and 

stochastic volatility where volatility is calculated with a parametric model, which requires 

assumptions about the distribution of the underlying asset. The downside of this approach is 

that it cannot replicate the main empirical features of financial data and that the estimation 

procedure may become complex. The second group contains theories which assume that 

volatility can be observed and relies on a nonparametric approach. This group includes the 

theory of realized volatility and range-based volatility models, which exploits the available 

intraday price observations to develop an estimator for the ex-post volatility. A major 

advantage of realized and range-based volatility models is that it replicates the main empirical 

features of financial data using realized changes in asset returns.  

 

An important result of properly using the available intraday data is that it can result in unbiased 

estimators of volatility, i.e. the benchmark. The downturn is that there are several reasons why 

using high frequency data, e.g. tick-by-tick data, for estimating volatility can introduce 

challenges. First, existence of microstructure noise can significantly bias the estimator upward 

as discussed in Andersen et al. (2001) and Alizadeh, Brandt and Diebold (2002). Although this 

problem can be solved to a large extent by choosing a more advanced estimator for realized 

volatility it requires some modelling experience. See for example Ait-Sahalia, Mykland and 

Zhang (2005) who solve this problem by using a Two Time Scale Estimator (TTSE). Second, 

estimates of realized volatility are driven by intraday trading activities and are therefore 

unlikely to show intertemporal stability. Barndorff-Nielsen et al. (2008) show that realized 

volatility estimates may vary substantially on a daily basis. Third, in some asset classes and/or 

markets there is no intraday data available or the volume of high frequency trades is very low 

which can impede the estimation of volatility based on high frequency intraday data. Fourth, 

estimating realized volatility with high frequency data includes working with extensive data 

sets which may require leading-edge data crunching challenges. While this task is not strictly 

impossible considering recent developments in the field of information-technology, it remains 

reasonable to take the cost-effectiveness of this additional effort into account.  

 

To the best of the authors’ knowledge, previous research has not covered empirical research 
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of realized volatility and (low-frequency) range-based volatility estimators on the specific 

European emerging market indices in the presented extent. This is of major importance to 

financial practitioners in these specific markets as it provides guidelines to the choice of the 

most efficient volatility estimator in terms of least biased and practical usage. It also applies 

these estimates in applicable examples of risk and portfolio optimisation studies. This study 

also enriches the existing literature on volatility estimators by including overnight returns to 

the respective set of low-frequency range-based volatility estimators.  

  

The literature on ranking methodology has been in an increased focus during the last decennia 

as it is of crucial importance in determining the least biased volatility estimator. This study 

enriches the existing literature by utilizing the tail correlation, which is a product of a copula 

function approach, in the ranking process of volatility estimates.  

1.4 Structure of the thesis 

The Thesis is structured as follows. Section 2 discusses the high frequency data that is used 

throughout the research. Secondly it discusses the filtering techniques that are used to filter out 

different forms of data contamination and, finally, it provides essential statistical analysis of 

the data.  

 

A theoretical background of the volatility models is provided in the third section. The 

theoretical background first discusses the theory of realized volatility, which forms the basis 

for further analysis. Secondly a vast amount of range-based volatility models is described, 

where the standard deviation, as the most popular volatility estimator both in the literature as 

well as in practice, is described separately. A vast amount of range-based volatility models that 

only utilize on open, high low and closing data are described in section 3.2.2. The Realized, a 

range-based volatility model that utilizes high frequency data, is described in section 3.2.3. 

Finally, the Two Time Scale Estimator is adopted as a theoretical unbiased estimator of 

volatility and is applied as a benchmark throughout the research.  

 

Section four discusses the challenges in estimating Realized Volatility and provides alternative 
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methods. It first discusses data challenges when dealing with high frequency data and then 

turns to the stylized facts of volatility estimation. Thirdly, sampling frequency selection is 

discussed as sampling frequency has been a popular method to deal with contamination of high 

frequency data. Finally, conclusions are drawn upon the theoretical analysis provided in this 

section. Section five discusses an extension of the set of range-based volatility models, where 

the impact of overnight returns is analysed as it may include important information that is 

revealed outside of normal trading hours. 

 

The results of the volatility estimates are ranked according to a ranking criteria. The theory of 

ranking volatility estimates is further discussed in section six. This section discusses several 

ranking methodologies. The first ranking methodology is based on the efficiency coefficient, 

which has been a popular methodology of ranking range-based volatility estimates based on 

low frequency data. Secondly, the Mincer Zarnowitz regression is discussed in section 6.2. 

Rankings based on efficiency gains, e.g. the mean square error and the quasi likelihood 

approaches, are discussed in section 6.3. Section 6.4 describes the linear correlation approach. 

Finally, section 6.5 proposes to use a Copula function approach for when the focus is on the 

risk in the tails of the distribution rather than on an “overall” best fit. 

 

Sections 8 provides an application in value-at-risk and section 9 in portfolio optimization, 

where a framework for Realized Covariance matrix based on low frequency price observations 

is provided. This is an important model in portfolio optimisation.  

 

Finally, section 10 concludes. In the end of the Thesis three appendices have been added to 

provide insight in the distributions of the realized and range-based volatility estimates and the 

results of the Mincer Zarnowitz regression. 
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2 DATA DESCRIPTION 

The empirical analysis utilizes a historical set of stock market prices that are observed at a high 

intraday frequency. This chapter explains the data filtering technique that is applied to the 

historical dataset of intraday price observations for each of the stock markets. It presents a 

statistical description of the dataset at different sampling frequencies and provides a graphical 

representation of the historical price changes for each of the stock markets together with the 

linear correlation between the different stock markets based on a one day interval.  

2.1 High Frequency Data 

The data considered in this research consists of the main stock market indices of a set of East 

European countries with EU membership at the time of writing. The intraday stock market 

price observations were provided by Thomson Reuters Services and contain the main stock 

market indices of the following set of Countries: Bulgaria, Romania, Croatia, Czech Republic, 

Hungary and Poland. The intraday stock market prices are observed at the one minute 

frequency. The basic information included in the dataset includes the ticker of the index, the 

date of each transaction, the type denoting “intraday 1 minute”, the time of the transaction 

expressed in minutes accurately, and the observed transactional volume. All prices, as provided 

by Tomson Reuters Services, are denoted in local currency. The data starts on the 4th of January 

2010 and ends on the 1st of April 2016. The total number of price observations differ per index 

due to difference in trading hours, national holidays and overall trading activities. For the 

purpose of this research it is not necessary to align the dates of the different stock market price 

observations and neither it is necessary to convert the observed prices to a single currency as 

the comparison is performed per stock market index. 

 

Table 2-1 gives an overview of the stock indices, tickers, trading dates, trading time and 

number of observations for each observed index. The start and end date are identical for all 
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stock market indices. The starting and ending time denote the official trading hours for each of 

the stock market indices. The trading times depend on the internal rules set by the specific 

stock market. The sample size provides a first glance on the trading liquidity of each of the 

stock markets. The sample size ranges between 312.644 (.CRBX) and 810.431 (.WIG) 

observations based on the 1-minute frequency.  

Table 2-1 Statistical description of the Index data. 

Index Ticker Trading Dates Trading Time Sample  

size 

Country City Ticker Start End 
Start 

(time) 

End  

(time) 

Romania Buchurest .BETI 4.1.2010 1.4.2016 9:45 AM 6:00 PM 327.145  

Hungary Budapest .BUX 4.1.2010 1.4.2016 9:00 AM 5:10 PM 639.294 

Croatia Zagreb .CRBX 4.1.2010 1.4.2016 9:15 AM 4:25 PM 312.644   

Chech Republic Praha .PX 4.1.2010 1.4.2016 9:00 AM 4:25 PM 630.858 

Bulgaria Sofia .SOFIX 4.1.2010 1.4.2016 9:30 AM 5:15 PM 571.885   

Poland Warsawa .WIG20 4.1.2010 1.4.2016 9:00 AM 6:00 PM 810.431 

2.2 Filtering technique 

Pricing quotes sampled at ultra-high velocity are prone to wrong data records either due to the 

asynchronous nature of tick data, the treatment of time, differences in tick frequencies, etc. If 

these type of errors exist in the recorded database then they need to be dealt with accordingly. 

For analytical purposes the data also needs to be presented in discrete and equidistant or equal 

time intervals. As a consequence tick-by-tick data are subject to sophisticated filtering and data 

cleaning algorithmic techniques as proposed by, e.g., Brownlees and Gallo (2006) and 

Barndorff-Nielsen et al. (2006). 

 

The database received from Reuters is already presented at a discrete time sampling intervals 

of 1 minute and is therefore not prone to the type of errors that contaminate ultra-high 

frequency data as for example would be the case with tick-by-tick data. However, the type of 

errors that may contaminate this type of data are mostly driven by missing intraday quotes, e.g. 

due to lack of trading activities in particular markets, and price observations outside of normal 

trading hours. Using ultra-high sampling frequencies in these markets like for example tick-

by-tick or even 1 second sampling would result in predominantly empty fields for most of the 
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indices due to limited trading activities that is determined by the market. The choice for the 

high frequency sampling interval of 1 minute is based on the least complete index, i.e. the 

.CRBX. For the reasons outlined we suggest to avoid ultra-high sampling frequencies when 

dealing with this type of markets and propose a fairly simple filtering technique to ensure that 

only non-zero quotes within official trading hours are included. Our filtering technique consists 

of a two-step approach. In the first step only transactional prices observed during official 

opening hours of the particular index are included in the analysis. All quotes outside of official 

opening hours are removed from the dataset. In this way the filtering technique ensures that 

only official price quotes are included in the analysis. In the second step all price observations 

denoting zero are removed from the dataset as it are considered recording errors. No other 

outliers have been detected in the dataset. 

2.3 Statistical properties of the data set 

The dataset consists of a set of consecutive and discrete intraday price observations sampled 

at a 1 minute frequency. Figure 2-1 shows a sample of 170 intraday transactional prices for 

.CRBX that have been observed during the 18th of January 2016. The beginning of the trading 

day starts at 9:15AM and ends at 4:25PM. Even at the 1-minute frequency Figure 2-1 shows 

that there are empty spots, which indicate that there hasn’t been any trading activity in this 

index during some periods. Overall the 1-minute frequency shows that in most 1-minute 

intervals a trading activity has occurred. 
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Figure 2-1 Sample of intraday transaction prices of the .CRBX index during 18 January 2016. 

A sample of a set of consecutive transactional intraday price movements indicating a trading 

week is shown in Figure 2-2. The vertical bold lines indicate the ending and beginning of a 

trading day. Notice that the standard deviation, which is a popular volatility estimator, would 

usually only include the prices observed at the end of the day. Hence, the standard deviation 

ignores all the intraday price information that is available. Notice that on the 22nd of January 

the lowest price observation was lower than the opening or closing price and that on the 23rd 

of January the highest price observation exceeded both the opening as well as the closing price. 

The difference between the closing price on the 23rd of January and the opening price on the 

24th of January is defined as an “overnight jump”. Overnight price jumps indicate the price 

change between the ending and beginning of a new trading day and often contains valuable 

price information.   

 

Figure 2-2 Sample of intraday transaction prices of the .CRBX index during the period of 22-26 

January 2016. The vertical lines indicate the beginning and the end of each trading day. 

The entire database for all the stock market indices is visualized in figure 2-3. This figure 

shows the price range during the observation period and the price path for each index. From 

figure 2-3 we observe that the price movements between .BUX and .BETI show some 

similarities during the observation period. To some extent a similarities between price 

movements can be observed with .CRBX, .WIG20 and .PX. 
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Figure 2-3 Historical price observations of selected indices. 

Table 2-2 shows the linear correlations between the selected indices. All correlations greater 

than 50% are shown in bold. From the correlation matrix we observe that .BETI shows strong 

correlation with .CRBX, .PX and .BUX, while .CRBX is also strongly correlated with .BUX. 

Only .SOFIX and .WIG20 show poor correlation with all other indices except between each 

other. 

Table 2-2 Linear correlations of the selected indices. 

Correlation .SOFIX .CRBEX .PX .BUX .WIG20 .BETI 

.SOFIX 1.00 -0.06 0.00 0.07 0.80 0.01 

.CRBEX -0.06 1.00 0.38 0.68 -0.21 0.81 

.PX 0.00 0.38 1.00 0.13 0.18 0.62 

.BUX 0.07 0.68 0.13 1.00 -0.11 0.73 

.WIG20 0.80 -0.21 0.18 -0.11 1.00 -0.07 

.BETI 0.01 0.81 0.62 0.73 -0.07 1.00 

 

The database with the sampling frequency of 1 minute allows us to sample the data at lower 

frequencies, e.g. 5 minute, hourly, etc. The reason for using intraday price observations is to 

include this information in the volatility estimator. However, in the existing literature there is 

no consensus reached on the optimal sampling frequency for estimating volatility. See for 

example Zhang et al. (2005), Hansen and Lunde (2006) and Bandi et al. (2008) who propose 

different optimal sampling frequencies for an optimal volatility estimate. A conclusion that can 

be drawn from the different analysis made is that the optimal sampling frequency depends on 
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the type of security and its intraday trading activity. A limit on the highest possible frequency 

can be suggested by means of intraday trading activities. For example, the observed markets 

show very poor intraday trading activities at the 1 second interval, while at the 1 minute interval 

the trading activity becomes substantial. Another aspect to consider is the extent to which the 

optimal sampling frequency is time invariant, i.e. the optimal sampling frequency might 

change over time due to mutations in the nature of the underlying security. This research takes 

the type of market into account when determining the optimal sampling frequency while the 

time period of determining the optimal sampling frequency is left for further research in this 

area. Table 2-3 shows the basic statistics for the entire dataset given the highest possible 

sampling frequency and the database at disposal. Next to the 1 minute frequency the statistics 

of 5 minute, hourly and daily frequencies are assessed. The mean, median and standard 

deviation increase with the sampling frequency, which means that on average the price changes 

increase with the frequency. 

Table 2-3 Descriptive statistics of the stock index returns during the period 4.1.2010-1.4.2016. 

Index 
Sampling 

frequency 
Mean Median 

Standard 

deviation 
Skewness Kurtosis 

Sample 

Size 

Romania 

  

  

  

1 minute 1,1E-06 0,0E+00 7,6E-04 -3,08 579,62 327,145 

5 minute 4,3E-06 0,0E+00 1,5E-03 -1,77 157,09 327,142 

Hourly 2,8E-05 9,7E-06 3,9E-03 -0,67 28,92 327,119 

Daily 1,5E-04 2,4E-04 9,4E-03 -0,87 17,73 327,006 

Hungary 

  

  

  

1 minute 3,4E-07 0,0E+00 6,5E-04 -0,24 331,35 639,294 

5 minute 4,0E-07 0,0E+00 1,4E-03 -0,38 88,23 571,881 

Hourly 4,0E-06 0,0E+00 4,8E-03 -0,13 10,02 571,828 

Daily 3,3E-05 3,3E-04 1,3E-02 -0,40 2,90 571,464 

Croatia 

  

  

  

1 minute -5,8E-07 0,0E+00 4,8E-04 12,01 1828,77 312,644 

5 minute -2,9E-06 -5,6E-06 1,1E-03 5,21 375,35 312,640 

Hourly -2,4E-05 -7,6E-05 3,3E-03 1,19 52,06 312,602 

Daily -1,5E-04 -1,3E-04 8,2E-03 0,59 11,42 312,380 

Chech  

 Republic 

  

  

1 minute -3,6E-07 0,0E+00 4,7E-04 -1,01 1460,01 630,858 

5 minute -1,8E-06 0,0E+00 1,1E-03 -0,60 213,80 630,854 

Hourly -1,8E-05 0,0E+00 3,5E-03 -0,42 21,48 630,810 

Daily -1,5E-04 3,4E-04 1,1E-02 -0,63 6,77 630,430 

Bulgaria 

  

  

  

1 minute 7,6E-08 0,0E+00 4,7E-04 -0,50 209,90 571,885 

5 minute 4,2E-07 0,0E+00 1,1E-03 -0,68 68,40 571,881 

Hourly 2,8E-06 0,0E+00 2,7E-03 -0,21 28,35 571,856 

Daily 2,3E-05 0,0E+00 8,0E-03 0,04 10,79 571,616 

Poland 

  

  

  

1 minute -2,5E-07 0,0E+00 5,2E-04 -2,69 453,49 810,431 

5 minute -1,6E-08 0,0E+00 1,2E-03 -0,82 81,85 571,881 

Hourly 1,5E-08 0,0E+00 4,0E-03 -0,37 10,29 571,828 

Daily -3,6E-06 2,7E-04 1,2E-02 -0,57 4,55 571,432 



 

16 

 

3 THEORY OF VOLATILITY ANALYSIS 

The first section of this chapter discusses the theory of realized volatility, which is the basis of 

this research. The second section discusses the theory of range based volatility estimators, 

which are the alternative estimators of the realized volatility and will be further assessed in an 

empirical analysis. The third section discusses an important question related to sampling 

frequency selection and unbiased estimators of the true integrated volatility. The Two Time 

Scales approach is proposed to avoid bias due to microstructure noise or sampling error. This 

approach is assumed to provide with an unbiased estimator of the true (integrated) volatility 

and is adopted as the benchmark volatility estimator in this research. 

3.1 The Theory of Realized Volatility 

The actual volatility, also referred to as the integrated volatility (IV), is a measure of the ex-

post return variability over a defined and non-vanishing time interval. This is a theoretical 

framework that provides the basis for formulating a discrete model that can be used to quantify 

the actual volatility given a certain set of assumptions. The theoretical framework starts with 

an assumption of the underlying data generating process.  

 

Let 
tr denote the logarithmic return of the instantaneous stock price

tp of a particular security 

at day t, hence 
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Assume that the underlying data generating process is a continuous time, continuous sample-

path model, and that the logarithmic returns follow a Brownian semi-martingale of the form 
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The first term of the process on the right hand side is the drift, where   is a local martingale 
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with constant variable and finite variation. The second term on the right hand side is the 

diffusion coefficient, where 
2 is a càdlàg adapted stochastic volatility process of locally 

bounded variation away from zero and dWu  is a standard Brownian motion. The volatility 
2

is also independent of Wu . The integrated volatility is defined as the integral of the 

instantaneous volatility over the one day interval , [𝑡, 𝑡 + ℎ] , where the time interval ℎ 

represents a full 24 hours day. The IV can be considered an unbiased latent volatility measure 

and is of the form: 
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In practice, however, stock price observations are observed in discrete time intervals and are 

usually not continues. The analysis of the data in section 2.3 shows the sampling discreteness 

of the East European indices. The data are observed with a frequency of 1 minute and have 

both an opening and a closing time during the day. There are no price changes observed prior 

to the opening nor after the closing of any of the indices. To estimate the actual volatility a 

discrete formulation of the IV is required. As noted in Barndorff-Nielsen and Shephard (2001), 

Andersen, Bollerslev, Diebold and Labys (2001) and also in the earlier work of Comte and 

Renault (1998) the IV of the semi-martingale process in equation 3-1 can be estimated using 

cumulative squared intraday returns observed with high frequency. Hence the standard 

definition of realized volatility (RV) of returns is defined as the sum of intraday squared 

returns, i.e. 
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Assuming that the interval between observations is equally distanced, commonly referred to 

as equidistant, a total of M intraday returns can be constructed from the opening to the closing 

time of the indices. The sum of squared intraday returns is an unbiased measure of the 

integrated volatility under some general conditions. The theoretical justification for this 

approach is that when the number of observations, M, goes to infinite the RV tends in 

probabilistic terms to the quadratic variation of the semi-martingale process (equation 3-1). It 

is therefore a consistent, unbiased and nonparametric estimator of the IV over the fixed time 

interval, i.e. 𝑝𝑙𝑖𝑚𝑚
          
→   ∞𝑅𝑉𝑡,∆ = 𝜎𝑡,∆

2 . However the intraday returns must be continuous serially 
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uncorrelated and there should exist no bid-ask bounce or any form of microstructure noise that 

contaminates the result. Although these condition perhaps do not seem unreasonable, in 

practice the assumption of continuous returns is often violated because securities usually have 

limited trading hours. There is one exception in the foreign currency market which is traded 

for almost 24 hours a day and seven days a week. The assumption of serially uncorrelated 

returns is also often violated and can be seen as one of the stylized facts of high frequency 

financial return time series. Thus in practice the RV is very seldom an unbiased estimator of 

the latent true volatility (Zhang et al. (2005), Bandi et al. (2008)).  

 

Figure 3-1 shows the estimated RV for the observed set of East European stock indices.  

  

  

  

Figure 3-1 shows the Realized Volatility estimates of the observed East European indices during 
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2010-2016. 

 

Figure 3-2 Historical distributions for six East European indices.  

Figure 3-2 shows the distributions of the RV estimates for the 6 East European indices. It is 

evident that .BETI, .BUX and .CRBX show heavier tails compared to .PX, .SOFIX and 

.WIG20. Table 3-1 shows the statistical properties of realized volatility estimates for the 6 

stock market indices. The average of the daily returns ranges between 0.095 (.CRBX) and 

0.186 (.BUX). The standard deviation ranges between 0.052 (.CRBX) and 0.091 (.BETI). The 

positive skewness indicates that the distribution is skewed to the right side, which is also 

evident from Figure 3-2. The sample sizes of the indices ranges between 1546 (.SOFIX) and 

1577 (.BETI) and can be considered reasonable in line across all indices. 

Table 3-1 Statistical properties of realized volatility estimates for the European indices. 

Statistics .BETI .BUX .CRBX .PX .SOFIX .WIG20 

Mean 0.146 0.186 0.095 0.137 0.132 0.169 

Median 0.125 0.165 0.086 0.120 0.120 0.149 

Standard deviation 0.091 0.085 0.052 0.070 0.065 0.082 

Skewness 4.413 3.400 8.036 3.349 2.799 2.815 

Kurtosis 30.527 21.589 121.991 17.272 15.855 11.954 

Sample Size 1577 1554 1557 1568 1546 1562 
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3.2 The Theory of Range based Volatility estimators 

Range-based volatility estimators utilize the available intraday price information by combining 

the spread between the open, high, low and closing prices. The range can be defined within 

any subset of intraday price observations based on any available frequency. The easiest 

example can be found with the daily frequency, where the opening price equals the first 

observable price at the opening of the market, the high and low indicate the extremes during 

the trading day, while the closing price indicates the final closing price at the end of the trading 

day. When dealing with high frequency data the high and low are defined as the extremes 

subset within a trading day. Range-based volatility estimators can depend on high frequency 

intraday data (see for instance section 3.2.3, where the realized range is discussed in more 

details) as well as on low frequency intraday data. Estimators that require only a limited amount 

of intraday observations consisting of a combination of the open, high, low and closing prices 

belong to the set of low-frequency volatility estimators. Low frequency data has some practical 

advantage of being widely available across a vast amount of asset classes and markets. Besides 

this, volatility estimators based on low frequency data have in general a computational 

advantage by being less complex compared to estimators that require high-frequency data. One 

of the most popular low frequency volatility estimators that can be found in the literature is the 

standard deviation, which is discussed in more details in section 3.2.1. Section 3.2.2 discusses 

a wide range of range based volatility models based on low frequency OHLC data that can be 

found in the literature. Finally, section 3.2.3 discusses the Realized Range estimator that 

utilizes high frequency price observations.  

3.2.1 Standard deviation 

The standard deviation of financial returns is a volatility estimator which shows how the data 

is clustered around its mean. For statistical analysis it is an indispensable statistic as other 

statistics, like the skewness and correlation for example, also depend on the standard deviation. 

Although there is no officially market standard model for estimating the market volatility, it 

wouldn’t be a completely false statement to assert that the standard deviation of returns is the 

most widespread used model for estimating market volatility. This would then be the case in 

both the literature as well as in practice. For example, it is widely used in Modern Portfolio 
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Theory, which was introduced by Nobel Laureate Harry Markowitz (1952) in his seminal paper 

which changed the way portfolios were managed until then. It is also widely used in the theory 

of Value-at-Risk (VaR) of which Philippe Jorion (2007) can be considered as one of the 

‘fathers’ of the modern VaR theory. The standard deviation was also one of the key 

assumptions in the Black and Scholes (1973) option pricing model. 

  

The standard deviation owes this popularity to, among others, its relatively simple calculation 

on one side and the intuitive symmetric assumption that financial returns follow a normal 

distribution on the other side. It is a metric of the volatility that can be considered in 

relationship to the mean of the distribution of returns. This assumption, however, is often 

violated because the distribution of financial returns is often not symmetric, but rather ‘suffers’ 

from positive skewness and leptokurtosis which are one of the well-known ‘stylized facts’ of 

financial time series. Ignoring these stylized facts can result in miscalculated volatility 

estimates, which may undesirably influence all further thereon dependent decisions. Another 

aspect of concern is that the standard deviation requires multiple consecutive daily price 

observation and thereby ignores the intraday price movements and all information that is 

available during the day. For example, assume an extreme situation where the intraday price 

movements in several consecutive days are extremely volatile, yet close each day on the same 

level. The standard deviation based on closing prices would in this case detect zero volatility, 

while the estimated volatility would have been positive if the intraday mutations were 

considered. To correctly estimate the volatility of financial returns it is important to take the 

intraday price movements into account.  

 

Another drawback of the standard deviation is that it depends on a sequence of historical 

observations, i.e. it is not possible to estimate the daily volatility based on the information 

observed during a particular day. The standard deviation heavily depends on the number of 

historical observations that are required for the estimation. This sensitivity raises the classic 

question on the optimal number of observation for estimating the standard deviation.  

 

Figure 3-3 shows the impact of the standard deviation for 6 stock indices based on 10 and 100 

day historical observations.  
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Figure 3-3 The annualized historical standard deviations based on 10 and 100 observations 

denoted, respectively, with the blue and red line for the period 2010-2016. 

It is obvious that the standard deviation based on 100 trading days, i.e. the red line, is less 

volatile than the standard deviation based on 10 trading days, i.e. blue line. Hence the more 

trading days are used to estimate volatility the smoother the estimator becomes. 

3.2.2 Range based volatility estimators 

Range based volatility estimators that utilize the information available from OHLC type of 

data, generally assume that asset prices follow a Geometric Brownian Motion (GBM). This 

means that the price of the asset on day t is independent of the price of the same asset on day 

t-1 and that the price of the assets are stochastic through time. A vast number of range based 
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volatility models that utilize OHLC type of data have emerged in the literature during the past 

few decennia. This section provides a literary overview of the range based volatility models.   

 

First we explain the notations of the volatility estimators. Let’s denote the intraday price of a 

financial asset on day  ,...,,Ii 210    at time Tt  as itP , . Denote the daily closing 

price on day i  a iC , the daily opening price as iO , the daily lowest price as iL  and the daily 

highest price as iH . Define a set of range-based volatility estimators as
2
,ˆ it , where ni ,..2,1   

denotes the number of estimators and t denotes the time in days. Hence, the range-based 

volatility estimators use a combination of open, high, low and closing prices to estimate the 

market volatility. Range-based volatility estimators are therefore subject to a limited sampling 

frequency of at least one and at most four observations per single trading day. Range-based 

volatility estimators use a combination OHLC price observations during a single trading day 

or during multiple consecutive trading days. 

 

The formula for estimating the volatility presented in this chapter assumes that the volatility of 

a single day is in the focus of interest. However a longer period of observations can also be 

taken into account as well. The ex-post volatility can be calculated with a number of 

consecutive historical days. Although the number of days used to estimate volatility is 

arbitrary, it has a lower limit of 1 day. For ease of comparison the estimated volatilities can be 

annualized with the number of trading days per annum, N, set to 250. The annualized volatility 

estimate *
,ˆ it at time t is denoted by:  
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One of the most popular and simplest measures that can be used for estimating daily volatility 

is the daily (close-to-close) squared (D). The return is based on the natural logarithm of closing 

prices observed on two consecutive days. The formula for the close-to-close estimator based 

on two closing price observations on two consecutive trading days is of the form: 
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The advantage of the close-to-close estimator is that it requires only daily closing price 
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observations. It can be calculated based on only 2 consecutive trading days, but can be 

extended to closing prices observed in multiple trading days. The disadvantage of the close-to-

close estimator is that it doesn’t include intraday price movements. As intraday price 

movements contain information on the volatility of the financial asset it is considered 

important. Alternative popular measures of volatility that exploit intraday price range 

information are the daily close-to-open (CO), the daily close-to-open-to-close (COC) and the 

daily high-low (HL) volatility measures 
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The advantage of the close-to-open-to-close estimator is that includes overnight price 

mutations. The High-Low uses the highest and lowest intraday available price change to 

estimate the volatility. Since 1980 a number of models for estimating daily volatility have 

emerged in the literature. The efficiency of these models has been measured with the 

coefficient of efficiency, which is commonly compared to the daily squared return estimator 

(equation 3-5) as the usual benchmark in the wide literature. Chapter 7.1 explains the 

coefficient of efficiency in more detail. In this section we only use the results of the coefficient 

of efficiency that is found in the literature.  

 

One of the first to propose a range based volatility estimation model that assumes an underlying 

geometric Brownian motion with zero drift, 𝜇 = 0, was Parkinson (1980). This model uses the 

daily variance measured as the difference between the maximum and the minimum intraday 

price for estimating the volatility. According to Parkinson (1980) this new volatility measure 

that is based on extreme high and low intraday price ranges has an efficiency coefficient that 

is approximately five times higher than the classical daily squared returns. 
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Garman & Klass (1980) also assume zero drift, but include all four OHLC intraday price 

observations by incorporating the opening and closing prices in their model. Garman & Klass 

(1980) claim to gain in the efficiency coefficient approximately 8 times in comparison to the 

daily squared return  
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One of the main disadvantages of the Parkinson and the Garman & Klass models is the 

restrictive assumption that has been set on the drift of the assumed price process, i.e. 𝜇 = 0. 

Rogers & Satchell (1991) and Rogers, Satchell & Yoon (1994) propose a drift independent 

estimator when the drift term for the prices is not zero. This volatility estimator is particularly 

useful when the drift of the underlying geometric Brownian motion is non zero. 
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An extension of this model is proposed by Yang and Zhang (2000). This estimator combines 

the classical and the Roger and Satchell estimator and also allows for opening jumps.  
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The ‘opening’ volatility is defined by
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GKi is the volatility measure as proposed by Garman and Klass 

(1991). The constant k takes the form
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. According to Yang and Zhang the optimal 

value for the parameter   is 0.34. Given the specificities of the underlying financial time 

series the optimal value for the parameter  can additionally be calibrated by minimizing the 

mean squared error in comparison to the benchmark unbiased volatility estimates. The Yang 

and Zhang model can be considered as a more complete model since it allows for opening 

jumps and it also includes previous day opening and closing prices.   

 

A summary of the various range-based volatility estimates is included in table 3-2. The 

summary table indicates which of the available (open, high, low and closing) prices are used 
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by the estimator. Next the summary table also indicates whether previous day prices, drift 

and/or overnight jumps are included. Thus some of the estimators only use current day price 

observations, while other estimators also rely on previous day price observations.  

Table 3-2 Summary of range-based volatility estimates. 

Volatility estimate 
 

Prices 
taken 

Include 
previous 
day prices 

Include 
Drift 

Include   
o/n jumps 

Theoretical 
efficiency 
gain 

2

,
ˆ

CCSi  
Standard Deviation C Yes No No - 

2

,
ˆ

CCSi  
Close-to-Close squared 
daily return 

C Yes No No 1 

2

,
ˆ

CCAi  
Close-to-Close absolute 
daily return 

C Yes No No - 

2

,
ˆ

COi  
Close-to-Open CO No No No - 

2

,
ˆ

HLi  
Range HL No No No - 

2

,
ˆ

Pi
 

Parkinson HL No No No 5.2 

2

,
ˆ

GKi  
Garman-Klass OHLC No No No 7.4 

2

,
ˆ

RSi  
Roger-Satchell OHLC No Yes No 8 

2

,
ˆ

YZi
 

Yang-Zhang OHLC Yes Yes Yes 14 

 

The drift is an important assumption for each estimator. Not assuming a drift term means that 

the estimator assumes zero drift of the underlying Brownian semi-martingale. Overnight jumps 

are important when there have been price changes overnight and the current opening price is 

not equal to the previous closing price. Indicating that the market has reacted to information 

outside of normal trading hours. In this case it is import for an estimator to include overnight 

jumps. The theoretical efficiency gain is based on efficiency gains from existing literature. The 

close-to-close squared daily return has an efficiency gain of 1 by default. The variance of the 

alternative volatility estimators is compared to the squared daily return. More details on the 

efficiency gain can be found in Yang and Zhang (2000). 

3.2.3 Realized Range 

The Realized Range model builds further on the theory of Realized Volatility and incorporates 

intraday range based information to increase the efficiency of the estimation. The model 

follows Parkinson (1980) by replacing each squared intraday return of the Realized Volatility 
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estimate by the high-low range for each intraday sub period. Following Martens and van Dijk 

(2006) and Christensen and Podolskij (2006) the formulation is of the form 
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Where H and L represent the highest and lowest prices of the ith intraday interval on the tth 

trading day, respectively. Martens and van Dijk (2007) consider a bias adjustment procedure 

to account for microstructure effects. They propose to scale the realized range by using a ratio 

of the average level of the daily range and the average level of the (scaled) realized volatility. 

The scaled, bias adjusted Realized Range is of the form 
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Where D
iRR denotes the daily range and q the number of trading days. The main idea behind 

the scaling factor is that the daily range based volatility is free of microstructure noise. An 

important criteria for the Realized Range is that it requires intraday sampling at very high 

frequency, to ensure a sufficient number of intraday sub periods to calculate the Realized 

Range.  

3.3 Two time scales approach 

The Two time scales estimation model builds further on the theory of Realized Volatility. 

Market microstructure noise in the RV can be filtered out by using a sub sampling method as 

proposed in Zhang et al. (2005) and in Ait-Sahalia, Mykland and Zhang (2005). The two time 

scale estimator (TTSE) estimates the IV consistently in the presence of microstructure noise. 

The TTSE uses the highest possible sampling frequency, N, to filter out the magnitude of the 

noise term by subtracting it from the average sparse RV estimator. The sparse RV estimator 

uses a lower sampling frequency, ∆, to estimate the average RV over a total of S non-

overlapping return series. For example, if the sampling frequency is 10 minutes than the first 

RV uses the returns sampled at 9:00, at 9:10, etc. The second RV is calculated using returns 

sampled at 9:01, 9:11, etc. and the last RV is calculated by returns sampled at 9:09, 9:19, etc. 

The average RV using sparse sampling frequencies is 
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Where S denotes the number of high frequency intraday observations. TTSE is calculated by 

subtracting the average of the sparse RV by an adjusted RV based on a high frequency price 

observations. The first term on the right side of equation 3-16 denotes the filtering term. 

NS
tt RV

N

n
RVTTSE   ,

                 3-16 

The second term on the right hand side of equation 3-16 denotes the RV estimator that is based 

on high frequency price observations. This estimate is corrected by a correction factor n , 

where �̅� =
𝑛−𝑆+1

𝑆
 .  

 

Figure 3-4 shows the TTSE estimates that are based on a single day for each of the East 

European indices during the observed period. From most indices the highest volatility was 

observed in the period 2011-2012. One exception is the .SOFIX index where the highest price 

jumps were realized in the period 2014-2015. In most cases the TTSE shows similarities over 

time across the different stock market indices. In most cases the second half of the observed 

period, 2013-2016, shows to be rather less volatile compared to the first half denoting 2010-

2013. 
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Figure 3-4 shows the TTSE estimates for the East European indices during the observed period. 

The distribution of the returns of the indices are shows in figure 3-6 with corresponding 

statistics in table 3-6. Each of the indices show a skewness to the right of the distribution with 

some heavy tails on the far right. The sample sizes of the indices range between 1546 (.SOFIX) 

and 1576 (.BETI). The means of the distribution range between 0.093 (.CRBX) and 0.145 

(.BUX). 
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Figure 3-5 shows the historical distributions of the TTSE estimates for six East European indices. 

The difference between the RV (Figure 3-1) and TTSE (Figure 3-4) can be prescribed to the 

microstructure noise that is present in the RV estimates. Figure 3-6 shows the difference 

between the TTSE and the RV estimates for each index. This difference has caused the “noise” 

in the RV estimator (equation 3-3) and is filtered out using the TTSE estimator (equation 3-

16).  

Table 3-3 showing statistical properties of TTSE estimates for the East European indices. 

Index .BETI .BUX .CRBX .PX .SOFIX .WIG20 

Mean 0.136 0.145 0.093 0.123 0.127 0.134 

Median 0.111 0.129 0.082 0.107 0.114 0.119 

Standard deviation 0.099 0.072 0.059 0.070 0.069 0.066 

Skewness 4.603 2.926 6.969 3.960 3.472 2.864 

Kurtosis 36.546 16.647 89.220 28.144 25.864 14.650 

Sample Size 1576 1554 1562 1568 1546 1562 
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Figure 3-6 shows the differences between the RV and TTSE estimates for the East European 

stock indices. 

Figure 3-7 shows the distributions of the differences between the RV and TTSE estimators for 

each of the stock indices. The distribution of the differences is concentrated around zero and 

shows skewness and tails on both sides of the distribution. 
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Figure 3-7 shows the distribution of the differences between the RV and TTSE estimates. 
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4 CHALLENGES IN ESTIMATING REALIZED 

VOLATILITY 

Estimating Realized Volatility requires a model, modelling experience and data crunching 

skills. One of the biggest challenges in estimating Realized Volatility includes the enormous 

amount of intraday data that needs to be processed. These large data set may cause various 

challenges to the estimation process. Section 4.1 discusses the data quality challenges, which 

is occurs frequently, section 4.2 discusses the stylized facts about Realized Volatility and 

section 4.3 discusses the optimal choice of the sampling frequency.  

4.1 Data quality and other limitation 

The convergence relation in section 3.1 states that RV approximates IV arbitrarily well as the 

sampling frequency M increases. Three issues, however, complicate the application of this 

result.  

 

First, continuous prices are unavailable. This theoretical assumption used in the theory of 

Realized Volatility requires some relaxation in practice. After all, there are only a few asset 

classes which reasonably comply with this extreme condition. Examples thereof are the foreign 

currency market, which trades around the globe continuously during workdays. Thus when the 

US market closes the trading continues on other foreign exchange markets as for example 

Tokyo, Sydney, etc. The only non-trading hours include weekends, i.e. from 22:00 GMT on 

Sunday (Sydney) until 22:00 GMT Friday (New York). Obviously this will only hold for the 

most liquid currencies (USD, EUR, JPY, AUD, GBP, etc.). For other asset classes, on the other 

hand, the trading hours are even less frequent as assets traded on the NYSE will, classically, 

not be traded at other Exchanges. This means that the trading hours depend on the particular 

Stock Exchange and will typically have 8 trading hours per day, which exclude weekends and 
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national holidays. This is a limitation, which introduces a discretization error in the realized 

volatility measure.  

 

Second, various microstructure effects contaminate the realized volatility estimates. 

Microstructure effects include negative autocorrelation, price discreteness and rounding, bid-

ask bounces, etc. 

 

Third, includes challenges caused by the limited availability of intraday data for particular 

assets or asset classes of interest. For example, the intraday database should consist of 

sufficient intraday data records at the required high frequency level. Data quality issues can 

limit the applicability of the theory of Realized Volatility for specific assets or asset classes. 

Infrequent intraday trading activities can also contaminate the high and low prices as was noted 

by Garman and Klass (1980). When intraday trading activities are infrequent the observed 

daily extremes could be less than the true extreme prices, which influences the volatility 

estimates. 

4.2 Stylized facts about Realized Volatility 

Realized Volatility is a discrete time intraday volatility model that estimates the actual 

volatility with high precision when the frequency of returns increases to infinite and the 

conditions outlined in section 3.1 apply. In practice intraday price observations are not 

continues and hence suffer from discretization error. A wide range of microstructure noise are 

commonly introduced while dealing with high frequency returns. As a result measurement 

error has become a consistent empirical finding of realized volatility estimates.  

 

Intraday price observations can suffer from a wide range of microstructure noise induced by, 

for example, the bid-ask bounce, diurnal effects, persistency in volatility, volatility jumps, 

discreteness of price changes, etc. Microstructure noise is often considered a general definition 

that includes any type of shock that contaminates the IV. There are a number of stylized facts 

of RV that are consistent across empirical findings. This section describes a number of stylized 

facts of the RV estimator that are well known in the literature.  
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4.2.1 Negative Serial Correlation 

Serial correlation is an important empirical finding that may impact the efficiency of the 

realized volatility estimator. It appears when error terms from different time periods are 

correlated as can be expected when high frequency intraday data is collected repeatedly across 

time. LeBaron (1992) studied the negative relation between serial correlation and volatility, 

also known as the “LeBaron effect”, which manifests at daily and weekly levels. He found that 

serial correlation changes over time and that it is related to the stock return volatility. Bianco, 

Corsi and Reno (2009) showed that there is also a negative relation between serial correlation 

and volatility on intraday level, whereas Oomen (2012) shows that the realized volatility 

measure becomes biased when returns are serially correlated. A careful choice of the optimal 

sampling frequency can reduce the impact of serial correlation on the realized volatility 

measure to a very small amount. In line with Oomen (2012) we show how serial correlation 

manifests under certain conditions. Using the additive property of logarithmic returns, it 

follows that the daily return is an aggregation of M intraday returns, which can be written as  
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j

jtt rr
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,,,            4-1 

The variance of 
,tr equals the sum of variances if and only if the intraday returns are 

uncorrelated. On the other side, when intraday returns are correlated, the variance of the sum 

of intraday returns equals the sum of the variances plus a covariance of intraday returns, i.e. 
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, where Var(x) denotes the variance of variable x, Cov(x,y) the covariance between x and y, and

1tF  denotes the information set from the entire sample path of tr available up to time t-1. The 

second term on the right hand side denotes the covariance of the intraday returns. Decomposing 

the squared return by means of the additive property leads to the sum of squared returns and a 

cross product denoted as the serial correlation 
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Hence the volatility of 
tr becomes equal to 
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j

jtr
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 if and only if the cross product on the 

right hand side is zero in expectation, i.e. 0
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it rrE . However when the serial 

correlation is not equal to zero the realized volatility becomes biased and over- or 

underestimates the actual volatility. Oomen (2004) shows in an empirical analysis on the 

FTSE-100 index that the impact of serial correlation on the realized volatility increases with 

higher intraday frequencies. At the 1 minute sampling frequency the bias due to serial 

correlation was estimated at 35%, while the optimal sampling frequency was between 25 and 

35 minutes.   

4.2.2 The bid-ask bounce 

The bid-ask bounce model was initially introduced by Roll (1984) who used the model to 

justify the phenomenon that lower frequencies are considered to be less contaminated then the 

higher ones. In this model the bid and ask prices are set by dealers, while the bid-ask bounce 

describes a symptom when transaction prices “bounce” back and forth between the bid and ask 

prices. Even when intraday price observations continuously bounce between the bid and ask 

prices and never exceed its boundaries it might significantly impact the realized volatility 

estimate. We further elaborate on equation (4-3) assuming the same diffusion process as was 

assumed in equation (3-1). As was the case with negative serial correlation, microstructure 

noise is also not considered to be time invariant due to the bid-ask bounce, but will rather 

evolve over time. 

Assume the bid-ask bounce is i.i.d., with        822  and   ,0 ttt EEE    and that the 

squared return series are also contaminated with microstructure noise denoted by ,, jt . The 

sum of squared intraday returns 2

,tr then takes the form 
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Thus, including serial correlation and microstructure noise due to the bid-ask bounce, the 
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measurement error in RV is assumed to increase.  

4.2.3 Intraday diurnal pattern 

The intraday diurnal pattern aims to explain the relationship between intraday trade volumes 

and intraday price changes over time. The intraday trading volume and price changes often 

show a diurnal pattern during opening trading hours. In a “U-shaped” diurnal pattern the 

volume of trades and price changes are often higher during the beginning and the end of the 

trading day, while during lunch time it shows lowest trading volumes and price changes. A 

“decreasing” or “increasing pattern” is similar to a “U shaped” except for having a lower 

trading volume at the beginning, respectively at the end of the trading day. Although not 

common in practice, an “inverted U shaped” diurnal pattern characterizes low trading volumes 

during the beginning and the end of the trading day, while during lunch time the trading volume 

increases. Figure 4-1 shows a graphical example of the 4 diurnal patterns described. 

 

 

Figure 4-1 Theoretical examples of diurnal effects showing the volume of trades on the vertical 

side and the intraday trading hours on the horizontal axes. 

 

According to Liu and Maheu (2011) intraday diurnal patterns also have a repeating character, 

but do not tend to manifest in a daily, weekly or monthly seasonal affect. The volatility 

estimates in scope of this thesis are, at least, on a daily basis. For this reason daily volatility 

estimates are not considered to be sensitive to intraday diurnal patterns.  
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The trading volume during trading hours of each index is shown in Figure 4-2. Most of the 

indices show a “U” shaped pattern in the middle of the day, while the trading activity decreases 

during trading hour. Only exception is the index, which shows “peak” around 12:00h indicating 

a slight increase in trading activities during lunch time. Another exception is the trading 

activity during the beginning of the trading day. Notice that both CRBX and BETI start with 

lower recorded trading activities, while WIG, BUX and PX show much higher overnight 

trading activities.  

 

 

Figure 4-2 Intraday diurnal patterns based on empirical data of the selected indices. 

4.2.4 Volatility jumps  

Assets prices may exhibit sudden discrete price movements when unexpected news reaches 
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the market. Assume the semi-martingale process in equation (3-1) includes jumps ( J ) and is 

defined by 

     4-5 

The IV over the interval t to t+h becomes 

       4-6 

where J(t) is non-zero only if there is a jump at time t.  

 

The IV of the semi-martingale process in equation (3-1) can also be estimated with the Realized 

Bipower Variation (BV), which provides a consistent estimate of the IV. In its simplest form 

BV can be defined by 
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where ,, jtr  is the j intraday stock price on day t,  Mtj ,...,1  and ∆ is the sampling frequency. 

Barndorff-Nielsen and Shephard (2004) show that the BV estimate converges to the same 

probability limit as RV when there are no jumps in the semi-martingale process. Hence the 

jump in the process is defined by 

 .0,max ,,,1   ttt BVRVJ          4-8 

4.2.5 Leverage effect and volatility feedback effects 

Leverage and volatility feedback effects are a phenomenon that describe an often observed 

asymmetry in volatility estimates. Namely, negative equity returns tend to increase the 

volatility more often than positive ones. This phenomenon was first noticed by Black (1976) 

and is commonly referred to as Black’s leverage hypothesis, i.e. “the tendency of negative 

correlation between the return and volatility of equities”.  

A decrease in the market value of an equity increases the debt-to-equity ratio and results in a 

relative increase of the leverage of the underlying company. Higher leverage also increases the 

risk of bankruptcy and often translates to a higher risk perception resulting in an increase of 

the volatility of the underlying stock price. A leverage effect with reversed causality is denoted 
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as the volatility feedback effect, i.e. the tendency of negative correlation between volatility and 

return of equities.   

4.3 Sampling frequency selection  

Microstructure noise contaminates the results of the realized volatility estimate. A simple, yet 

efficient solution to reduce the impact of microstructure noise is to use sampling at arbitrary 

selected lower frequencies as stated in Andersen et al. (2001). Equidistant sparse sampling 

frequencies, of which the most popular frequencies lay between 1 and 60 minutes, instead of 

sampling at extremely high frequencies can reduce the existence of microstructure noise.  

 

Assuming a weakly stationary return process as denoted in equation (3-1) the average of both 

terms on the right hand side of the RV (equation 3-1) denote the average realized volatility 

( RV ) and the average serial correlation factor ( ) respectively.  
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The optimal sampling frequency selection is based on a bias-variance trade-off. The choice is 

between the precision, which is based on the sampling frequency, and the incurring bias. A 

higher frequency would result in more precision, but with a larger bias. Whereas a lower 

frequency would result in less precision, but with a lower bias. The so called “volatility 

signature plot”, as suggested by Andersen et al. (1999), plots the average RV (eq. 4-10) against 

the average serial correlation (eq. 4-11) for intraday sampling frequencies ranging from 1 

minute to 120 minute.  

 

Andersen and Bollerslev (1998) and Andersen et al. (2001) where amongst the first to propose 

the 5-minute sampling frequency for measuring the volatility on the foreign exchange market. 

Ait-Sahalia et al. (2005), Zhang et al. (2005), Hansen and Lunde (2006) and Bandi et al. (2008) 

propose different optimal sampling frequencies for different assets. It is more common to 
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propose a higher frequency, of for example 1 minute, for liquid assets, while for illiquid assets 

a much lower frequency would be common. 

4.4 Summary of the challenges in Estimating Realized Volatility 

Estimating (realized) volatility by means of (ultra HF) intraday data is not without any 

challenges. The first challenge includes the data quality of the asset and asset class of interest. 

Data filtering techniques might be required to “clean” the data. This also may include the 

optimal sampling choice and the choice of the model to estimate the (realized) volatility. 

Finally analytical skills are required to analyse the results.   

 

This section discussed the stylized facts of realized volatility. At the (ultra) high frequency the 

distribution of RV is empirically strongly skewed to the right and has a very high Kurtosis 

reflecting high outliers. On the other side, at the lower sampling frequency (e.g. OHLC data), 

the distribution of RV is less skewed to the right and has a lower kurtosis denoting the 

robustness of the optimal sampling frequency versus outliers. Positive and negative 

innovations impact the realized volatility asymmetrically. This is also known as leverage 

effect. Next to this volatilities are time varying and clustering: 

1. Although the return distribution is non-Gaussian and leptokurtic, the standardized 

return (the ratio of return to realized standard deviation) distribution conforms well to 

the normal distribution. 

2. While neither realized daily variance nor realized daily standard deviation follow the 

normal distribution, the distribution of realized daily log-variance is closer to the 

normal distribution. 

3. Standard unit root tests often reject the presence of a unit root in realized daily variance. 

 

As volatility is commonly known to be mean reverting meaning that current information has 

zero impact on the long run forecast. 
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5 EXTENDING RANGE-BASED VOLATILITY 

ESTIMATES 

Range-based volatility estimators that only utilize OHLC data belong to the set of low-

frequency volatility estimators. The estimates require only a limited amount of intraday 

observations consisting of a combination of the open, high, low and closing prices. Low 

frequency data has the practical advantage of being widely available across a vast amount of 

asset classes and markets. Besides this, volatility estimators that are based on low-frequency 

data also have in common that they are computationally less complex then estimators that 

require high-frequency data. This chapter discusses existing models for estimating volatility 

based on only low-frequency data, it investigates the impact of overnight returns on these 

models and proposes an extension of the standard low frequency models by including the 

overnight price changes. 

5.1 Overnight returns 

Asset prices of financial exchange markets are typically only known at discrete time 

frequencies during official trading hours. The length of a trading day of an exchange market 

will depend on various factors. The type of the market will influence the length of the trading 

day as stock exchange markets typically close earlier than foreign currency exchange markets. 

The geography of the exchange market also plays an important role because of national 

holidays and other national influences that determine the trading hours. Stock exchange 

markets have typically around eight trading hours during a trading day. Some of the Asian 

stock exchange markets also have a lunch break around 12:00 pm local time. A typical example 

of a 24-hour market is the foreign exchange market which trades around the globe and begins 

on Sunday at 5:00 pm ET in Sidney and ends at Friday 5:00 pm ET in New York. Futures 

markets also have typically longer trading days than stock exchange markets. It ranges between 
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8 and 23 hours per trading day depending on the particular futures market. 

 

Opening prices are the first publically available trading prices after a non-trading period and 

Closing prices are the last publically available trading prices of a trading period. Stock 

exchange markets will typically have five opening and closing prices during a week, assuming 

there are no trading breaks during the day. On the other side FX markets of leading currencies, 

e.g. EUR/USD and GBP/USD, will typically have only one open and close price during a week 

as the trading continues around the globe.  

 

Opening prices will be rarely equal to closing price of the previous trading day as new 

publically available information can influence the supply and demand for any particular 

security. The market reacts by ordering a buy or a sell of the underlying security. If the 

information was released outside of trading hours then the buy or sell order will be executed 

at the opening of the exchange market and thus influence the opening price. If the demand 

increases in comparison to supply than the price will increase and, vice versa, if the demand 

decreases in comparison to the supply than the price will decrease. Next to publicly available 

information, future markets can continue trading during the closing period of the underlying 

exchange markets. The value of futures will generally impact the price of the underlying assets, 

which will be reflected in the opening price. Hansen and Lunde (2006) argued that a proper 

proxy for volatility should not only include the information available during trading hours, but 

should instead include all available daily information to cover a full period of 24-hours. To 

achieve this goal the overnight returns need to be included in the estimator. 

 

The difference between the opening price and the closing price of the previous day is defined 

as the opening jump. Opening jumps can largely impact the volatility estimation. Opening 

jumps  ,, t for the entire sample period of the six European indices (.BETI, .BUX, .CROBEX, 

.PX, .SOFIX and .WIG). The logarithmic difference between the opening price and the 

previous closing price is formulated by
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All opening jumps are equally weighted as was earlier proposed by Bollerslev et al. (2009), de 
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Pooter et al. (2008), Becker et al. (2007), Martens (2002) and Blair et al. (2001). 

 

Table 5-1shows the descriptive statistics of the opening jumps for all indices covering the entire 

sample path. For the .BETI and .SOFIX the opening prices equal the closing prices of the 

previous trading day and therefore there are no opening jumps observed in the descriptive 

statistics. Opening jumps are observed for .CRBX, .BUX, .PX and .WIG indices, which show 

a standard deviation ranging between 0.20% and 0.60%. The average ranging between 0.00% 

and 0.04% indicate historically positive expectations in opening jumps. The negative skewness 

for these indices indicate that there is a higher probability of extreme negative opening jumps 

then extreme positive opening jumps.  

Table 5-1 Descriptive statistics of opening jumps covering the period January 2010 to April 2016.  

4/1/2010 - 

1/4/2016 
.BETI .BUX .CRBEX .PX .SOFIX .WIG20 

Count 1576 1554 1557 1567 1550 1563 

Min - -4.74% -5.50% -4.04% - -4.85% 

Max - 6.20% 0.74% 3.71% - 3.30% 

Mean - 0.04% 0.00% 0.02% - 0.03% 

St.Dev - 0.59% 0.20% 0.46% - 0.60% 

Skewness - -0.22 -22.74 -0.45 - -0.82 

Kurtosis - 16.43 596.36 17.35 - 7.44 

 

Tables 5-2 and 5-3 show the descriptive statistics for two sub periods, i.e. until February 15th 

of 2013 and from February 15th 2013 onwards. The statistics indicate that the average, standard 

deviation and skewness in the opening jumps were lower in the second period. The only 

exception being .WIG20, which shows an increase in the average, the skewness and kurtosis.  

Table 5-2 Descriptive statistics of opening jumps covering the period January 2010 to February 

2013. 

4/1/2010 - 

15/2/2013 
.BETI .BUX .CRBEX .PX .SOFIX .WIG20 

Count 786 786 786 786 786 786 

Min - -4.74% -5.50% -4.04% - -4.85% 

Max - 6.20% 0.74% 3.71% - 3.30% 

Mean - 0.06% -0.01% 0.05% - 0.02% 

St.Dev - 0.79% 0.27% 0.64% - 0.71% 

Skewness - -0.24 -17.47 -0.45 - -0.65 

Kurtosis - 8.61 334.00 7.73 - 5.63 
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Table 5-3 Descriptive statistics of opening jumps covering the period February 2013 to April 

2016. 

15/2/2013 - 

1/4/2016 
.BETI .BUX .CRBEX .PX .SOFIX .WIG20 

Count 790 768 771 781 764 777 

Min - -1.51% -0.87% -0.48% - -3.66% 

Max - 1.50% 0.45% 0.41% - 2.27% 

Mean - 0.03% 0.00% 0.00% - 0.03% 

St.Dev - 0.24% 0.06% 0.09% - 0.47% 

Skewness - 0.30 -2.18 -0.64 - -1.17 

Kurtosis - 9.00 48.81 8.51 - 8.03 

 

Figure 5-1 confirms the statistical observations for all indices. As expected the .BETI and 

.SOFIX indices don’t show any overnight jumps in the entire history. For .BUX and .PX it is 

obvious from the figures that during the second half, the observations show lower opening 

jumps in absolute terms. The .CRBX shows volatility of the overnight returns during the entire 

period. The .CRBX also shows some downward outliers between 2011 and 2012 and between 

2014 and 2015. 

 

  

  



 

         47 

  

Figure 5-1 shows the overnight jumps of the East European stock indices. 

5.2 Extended range-based volatility estimates 

Based on the idea of Yang and Zhang (2000) opening jumps can be added to classical OHLC 

volatility estimators to allow for, upward and downward, opening jumps. The expectation is 

that adding an extension which allows for opening jumps will have a significant impact on the 

performance of the classical volatility estimators of stock assets if these opening jumps are 

significant.  

 

A straightforward solution is to linearly extend the estimators by the logarithmic difference 

between the opening price on day t and the closing price on the previous day. Assume that the 

extension that allows for opening jumps with respect to the previous trading day takes the form:

.ln

2

1











t

t

C

O
 The following extended estimators are defined: 

1. The extended Close-to-Open takes the form: 
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The extended Parkinson, Garman & Klass and Roger & Satchell take the following forms:  

2. Extended Parkinson 
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3. Extended Garman & Klass 
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4. Extended Roger & Satchell  
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5. Extended High-Low 

        5-5 

Table 5-4 gives an overview of the extended models: 

Table 5-4 Overview of the extended range-based volatility models 

Volatility estimate 
 

Prices 
taken 

Include 
previous 
day prices 

Include 
Drift 

Include   
o/n 
jumps 

Theoretical 
efficiency 
gain 

 

�̂�𝑖,𝑐𝑜𝑐
2  Close-to-Open-to-Close  OC  Yes No Yes Yes  

2
,ˆ Pexti  

Parkinson Extended OHLC Yes No Yes Yes  

2
,ˆ GKexti  

Garman-Klass Extended OHLC Yes No Yes Yes  

2
,ˆ RSexti  

Roger-Satchell Extended OHLC  Yes No Yes Yes  

�̂�𝑖,𝐻𝐿
2  High-Low Extended KL Yes No Yes Yes  
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6 THEORY OF RANKING VOLATILITY 

ESTIMATES 

There is a wide range of range-based volatility estimators available in the literature, with each 

of them having their own characteristics and specificities. Range-based volatility estimators 

can differ significantly from each other according to Duque and Paxson (1997) who also 

concluded that the choice of the range-based volatility estimator is important. Whilst the choice 

of the estimator is important for the analysis, the correct ranking methodology that will be used 

to find the most appropriate volatility estimator is the first step to take before ranking a set of 

competing estimators. It’s worthwhile noticing that different ranking methodologies do not 

necessarily guarantee the same unique result. The choice of the ranking methodology is, 

however, important and should take into account the ultimate purpose of the estimator. For 

example, if the ultimate purpose would be to measure the extremes, it might be useful to have 

a suitable ranking methodology that gives the highest ranking score to the estimator that is 

most suitable for the purpose.  

 

The first three sections cover the most popular ranking methodologies found in the literature 

and provide useful new insight in existing ranking methods. Section 6.1 discusses the classical 

efficiency coefficient, which has continually been used in a large number of previous research 

and which can be seen as a general method for cross-literature comparison of the ranking 

results. This section adds value by replacing the close-to-close estimator, which is the 

benchmark in the classical efficiency coefficient, with the unbiased benchmark, i.e. TTSE. 

Section 6.2 describes the Mincer-Zarnowitz linear regression model, which investigates the 

linear relationship between the volatility benchmark and the competing volatility estimates. 

More recent literature on ranking of volatility estimates advocates the use of the loss function 

approach, which is discussed in section 6.3. Among a wide range of available loss functions 

only a small set of robust loss functions are exploited and used for ranking. 
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Section 6.4 exploits a Copula function approach for ranking volatility estimates. This is a more 

suitable ranking methodology for when the extremes of the volatility estimates are of 

importance. Although different ranking methodologies do not guarantee the same unique 

results, they can be used in isolation for a specific purpose or in a joint assessment for a general 

overview. 

6.1 Ranking based on the efficiency coefficient 

The classical efficiency coefficient is a metric that has been used to rank range-based volatility 

estimates in a vast number of literature on estimating volatility with range-based models. By 

continually using the same methodology it has been possible to compare the results across a 

wide range of literature. Examples hereof include the main contributors of this specific 

literature: Garman & Klass (1980), Parkinson (1980) and Rogers & Satchell (1991). The 

standard benchmark proxy used in the early literature was the close-to-close volatility 

estimator, which on the one hand made the results comparable across the literature, but on the 

other hand is a biased estimator of the true, integrated volatility that can contaminate the 

ranking analysis. In the classical efficiency coefficient, the variance of the competing, range-

based volatility estimator, 2ˆi , is compared against the variance of the close-to-close volatility 

estimator, 2ˆc : 
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i

c
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  ,          6-1 

where Var(x) denotes the variance of x. The close-to-close estimator is merely an 

approximation of the true, unknown and unbiased volatility estimator. With the availability of 

intraday data and recent insight in the theory of realized volatility, the close-to-close estimator 

can be replaced as a benchmark with the unbiased, 2ˆTTSE , volatility estimator. The new 

efficiency estimator then takes the form: 
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In both cases the efficiency coefficient will equal one when the volatility estimator, 2ˆi , equals 

the benchmark estimator, 2ˆB . Where the B stands for the benchmark estimator, which is either 
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the close-to-close (equation 6-1) or the TTSE volatility estimator (equation 6-2). The efficiency 

coefficient will either become close to zero or explode in value if the competing volatility 

estimator differs extremely from the benchmarking model. In other words, the closer the 

efficiency coefficient gets to zero, the more the competing estimator equals the benchmark. 

The efficiency coefficient can therefore be seen as a suitable metric for overall comparison and 

ranking of range-based volatility estimates.  

 

A downside about these two metrics is that they provide input for the ranking methodology 

based on only a single value. Namely, the variance of both, the nominator and denominator, 

provide a very general view on the characteristics and specificities of the competing estimators. 

It does not provide information for comparison that is based on specific levels or movements 

of the benchmark volatility during time. For example, the competing estimator might move in 

the opposite direction of the benchmarking model and thereby give a complete wrong 

indication of the true volatility at that specific moment in time. The efficiency coefficient is 

also not a suitable metric for determining the correlation of extreme movements, as the 

efficiency coefficient might assign a high score to a competing estimator, while during extreme 

movements the competing estimator fails to capture the true volatility. 

6.2 Mincer-Zarnowitz regression 

Correlations have an explanatory property that explains the influence of variables. Correlations 

provide more explanatory power and include more information than for example a simple 

efficiency coefficient. Both the direction of the volatility estimator and the magnitude are of 

importance in the selection process. In line with this statement Kayahan, Saltoglu and Stengos 

(2002) use the coefficient of determination resulting from the Mincer-Zarnowitz regression to 

show that the 5-minute frequency Istanbul Stock Exchange provides a better fit than the normal 

GARCH model. The Mincer-Zarnowitz regression, see Mincer-Zarnowitz (1969), is a popular 

method for assessing the performance of volatility models. It describes the linear relationship 

between the competing, range-based, volatility estimates and the volatility benchmark. It is a 

linear regression of the unbiased volatility estimate, 2ˆTTSE , against each of the n competing 

range-based volatility estimates, 2ˆn . The Mincer-Zarnowitz regression is of the form 
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nnTTSE u 2
10

2 ˆˆ  ,                   6-3 

where 0  denotes the intercept, 1  the slope and u the error term. The coefficient of 

determination of the regression,𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
, where 𝑆𝑆𝑟𝑒𝑠 is the Sum of Squares of the 

residuals of the linear equation (equation 6-3) and 𝑆𝑆𝑡𝑜𝑡 denotes the Sum of Squares of the 

totals, which is proportional to the variance of the linear regression. The higher the coefficient 

of determination, the higher the likelihood between the competing volatility model and the 

benchmark. Thus 
22 ˆˆ nTTSE   when 𝑅2 = 1. 

 

Previous literature on volatility estimation has often used the daily squared return as a 

benchmark in absence of the true unbiased volatility estimator. This has usually resulted in 

relatively low numbers of the coefficients of determination. Andersen and Bollerslev (1998) 

demonstrated that a low coefficient of determination is likely due to the fact that the daily 

squared return is a very noisy proxy for the (unobservable) variance. We solve this problem by 

replacing the daily squared return with the unbiased volatility estimator, TTSE. 

 

The Mincer-Zarnowitz regression, however, is linear and therefore assumes that the correlation 

is constant over time. Since one of the stylized facts of financial time series states that 

dependence is not constant over time and that it moves countercyclical, see for example: Cont 

et.al. (2001), the results of the Mincer-Zarnowitz regression should be taken with additional 

care. 

6.3 Loss function approach 

Loss functions are one of the most popular ranking methodologies that can be found in the 

literature. They are often used to compare the predictive performance of competing models. 

Similar to previous research that focused on the predictive performance of volatility estimators, 

see Lunde (2005), Laurent, Rombouts and Violante (2009) and Patton (2011), this research 

considers loss functions to rank competing estimators against the benchmarking volatility 

model. The results of a statistical loss function are used to rank the models in accordance from 

best to worst. Patton (2011) finds that both the Mean Squared Error (MSE) and the Quasi 
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Likelihood (QLIKE) loss functions belong to the class of robust loss functions when used for 

comparing volatility models. This means that both MSE and QLIKE will provide consistent 

ranking even if an inefficient benchmark is used instead of the unbiased volatility estimator. 

 

The competing range-based volatility estimates, it , , are the imperfect proxies of the true 

volatility, TTSEt, . The overall distance between TTSEt,  and it , , is measured by the mean square 

error (MSE), which is of the form:  
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The QLIKE loss function is of the form 
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Loss functions are suitable for a general view on the volatility models. However, the approach 

is not the most suitable methodology when ranking the volatility estimates based on the risk 

that can be found in the tails of the return distribution. 

6.4 Pearson Correlation Coefficient 

The Pearson’s Correlation Coefficient, also referred to as a linear correlation coefficient, is 

defined as the covariance of two variables divided by the product of the variances. 

It is defined in the interval [-1, 1]. The correlation coefficient is a single value denoting the 

direction and magnitude of the correlation between the two variables. For example, a 

correlation of -1 would indicate two variables moving in opposite direction with the same 

magnitude, while a correlation of 1 would indicate two variables moving in the same direction 

with the same magnitude and a correlation of zero would indicate two variables that neither 

move in the same direction nor with the same magnitude.  

 

The correlation coefficient between the benchmark model and each range-based volatility 

estimate, i, is denoted with  iTTSE  ,  defined as: 
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where Cov(x,y) denotes the covariance between the variables x and y and  x , denotes the 

variance of the variable x.  

 

The advantage of this approach is that it provides a simplistic methodology for ranking range-

based volatility estimates. However the coefficient is not considered robust to outliers and as 

such it would not easily detect the correlation in the tails of the distribution.  

 

We calculate the Pearson’s correlation coefficient for each of the volatility estimates against 

the benchmark model for the total period of the historical data, i.e. from January 2010 to April 

2016 and for two sub periods, denoted by before and after February 2013.   

6.5 Copula function - Tail dependence approach  

The tail dependence approach for ranking volatility estimates measures the comovement of the 

estimates in the extremes of the distribution. In the bivariate case, the tail dependence measures 

the probability of an alternative volatility estimate exceeding a certain threshold given that the 

benchmark volatility estimate has already exceeded this threshold. For the ranking function the 

tail dependence approach can be seen as a powerful tool for measuring the dependence of the 

alternative volatility estimates with the volatility benchmark during periods of high volatility. 

This is an important ranking function when the focus of interest lays in the extreme events. 

Thus, when the alternative estimate should as precise as possible estimate the volatility during 

period of high volatility. This is usually not measured with the loss function or the Mincer-

Zarnowitz regression approach. The tail dependence approach utilizes a Copula function, 

which is the joint distribution of an alternative volatility estimate and the volatility benchmark.  

 

Copula functions are a powerful tool in modelling non-linear dependence structures between 

financial variables. Although Copula functions are considered as relatively new in financial 

applications its use has gained in popularity in the financial literature over the past few decades. 
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Although we have not recorded it’s applicability in ranking of volatility estimates, its range of 

applicability in finance is wide. For example, Li (2000) shows how Copula functions can be 

applied to determine the default correlation in collateralized debt structured fixed income 

products. Embrechts, McNeil and Straumann (1999) introduce Copula functions as a powerful 

concept to aggregate risk, Manistre (2008) shows the applicability of copula functions in 

aggregating economic capital and translates the results of the Copula function back to a static 

correlation matrix. A nice literature overview of Copula functions in econometric modelling, 

as suggested by Embrechts (2007), can be found in Patton (2009) and Genest (2009). The main 

interest of this research, however, is not in providing a general bibliometric overview as this 

has been described in many articles before. This research focusses on utilizing Copula 

functions to describe the non-linear dependence relationship of the extremes between range-

based volatility estimates and the unbiased volatility estimator, i.e. the TTSE benchmark 

model. The literature on Copula functions in finance has mainly focused on volatility 

forecasting and portfolio optimization. For as far as we are aware there has not been an attempt 

in the literature to use Copula functions for determining the dependence between volatility 

estimates. The goal of this investigation is to show how tail correlations, an important product 

of Copula functions, can be used to rank the range-based volatility estimates. For example, the 

copula function of a bivariate distribution describes the dependence structure, which can be 

used for pairwise comparison.  

 

An important advantage of the Copula based approach compared to, e.g., the Mincer-

Zarnowitz regression or a Pearson correlation coefficient is that the Copula based approach 

allows for non-linearity in the dependence structure. The Pearson correlation coefficient 

provides a single number to determine the linear dependence between two variables, while the 

Copula function provides information about the correlation over the entire distribution of the 

variable. The extreme variances that can be found in the tail of the distribution often show non-

linear dependence, which cannot be detected with a linear correlation coefficient such as the 

Pearson’s coefficient or the Mincer-Zarnowitz regression. A non-linear copula function 

provides information about the structure of the dependence in the extremes through the tail 

correlation, which is a product of the copula function.  
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In mathematical terms, let the variable X represent the unbiased volatility estimator TTSE and 

let variable Y represent one of the competing range-based volatility estimators. Sklar (1959) 

shows that any joint distribution function of random variables X and Y can be decomposed into 

its cumulative distribution functions  xFX  and  yFY , which are also known as marginal 

distribution functions, and a Copula function.  

 

A Copula function that combines the marginal distribution function can be mathematically 

expressed as:         yFxFCyYxXPyxF YXXY  ,,,  . The marginal distribution functions 

 xFX  and  yFY  are uniform transformed variates of u  and v  respectively, with  1,0, vu . A 

bivariate copula, joint distribution, function of the uniform variates transforms the variables X 

and Y into uniform random variables, ]1,0[~U  and ]1,0[~V , is of the form: 

   vVuUPvuC  ,, . The Copula function links the univariate distributions with the 

following relationship:    ,0, vuC     vvCuuC  ,1   and   1, .  

In general, it can be shown that the coefficient of the upper tail dependence measures, u , can 

be obtained with a function of the copula  vuC ,  given by 
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A popular Copula function is the Gaussian, or bivariate normal, copula function. Although 

Copula functions can be easily extended to the multivariate case, only the bivariate copula 

functions are considered for pairwise comparison and ranking methodology. The Gaussian 

copula function is of the form: 

   )(),(, 11 vuvuC             6-8 

Given that 11    and where  is the joint Gaussian distribution function with correlation 

coefficient ρ, 1 is the inverse of the Gaussian distribution function. The Gaussian copula 

function is not considered suitable for representing heavy tails. A limiting characteristic of the 

Gaussian copula is that it does not exhibit tail dependence. Copulas that do exhibit tail 

dependence are, e.g., the Student’s t copula, Gumbel and Taylor Copula functions.  
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The bivariate Student’s t-copula is a symmetric copula function that exhibits extreme tail 

dependence in both the upper and the lower tail. It is defined by 

   )(),(, 11
, vtuttvuC            6-9 

where 11   . Kole et al. (2006) investigates the probability of joint extreme downward 

movements of stock market prices and conclude that the Gaussian copula underestimates, 

while the Gumbel copula overestimates this risk and concludes that there is evidence to support 

the Student’s t copula function.  

 

Notice that both the Gaussian and Student-t Copula functions are symmetrical and produce 

local tail dependences in both the upper and lower part of the tails of the multivariate 

distribution. Since volatility estimates exhibit only positive values by default, only the upper 

tail dependence is of interest. Two examples of asymmetric copula functions are the Gumbel 

and Clayton copulas.  

 

The Gumbel-Hougaard or Gumbel copula function is an upper tail dependence measure 

representing extreme value distributions given by  

       












 
1

lnlnexp, vuvuC                 6-10 

with parameter  1 . The parameter  controls the strength of dependence, i.e. upper tail 

dependence is a function of Gumbel copula parameter 

1

22 u . When 1 , there is no 

dependence ( 0u ) and when ,  there is perfect dependence ( 1u ). 

 

The Clayton copula function is a lower tail dependence measure representing extreme value 

distribution given by 

     /1
0,1max,
  vuvuC                 6-11 

Instead of considering the distribution of u and v  , we can also consider the distribution of 

u1 and v1  , which is also known as the rotated Copula. This approach only makes sense for 

asymmetric copula functions like the Gumbel or Clayton copulas. Since the Clayton copula 

returns only lower tail dependence, the rotated Clayton copula function would return the upper 
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tail dependence, which is the point of our interest. 

  

Since range-based volatility estimators, as well as realized volatility estimators, are considered 

to be heavy tailed on the right side of the distribution we find that the Gumbel copula function 

is adequate for measuring extreme dependences as it only exhibits upper tail dependences 

(Gumbel, 1960). Besides this the Gumbel copula is more asymmetric then the rotated Clayton. 

The tail dependence coefficients based on the rotated Clayton copula are used for robustness 

of the results. 

 

The Gumbel and rotated Clayton copula functions are fitted to each bivariate distribution, i.e. 

each of the univariate pairs of range-based estimators. Each range-based volatility estimator is 

fitted against the tTTSE . The empirical analysis includes the entire history of the selected 

emerging market indices.  

 

The upper tail dependences are fitted with the Gumbel and rotated Clayton copulas using 

empirical CDF. Both copulas are fitted to each bivariate distribution, i.e. 12 univariate pairs. 

For each country under consideration, 12 tail dependences are estimated for each copula 

function.  
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7 RESULTS OF THE RANKING ANALYSIS 

In the past decennia we have evidenced a vast increase of realized volatility models and ranking 

methodologies in the literature. The literature has not been unanimous on the volatility 

benchmark model for comparison of the results. In many cases the literature would claim the 

standard efficiency coefficient, which compares the competing estimator against the close-to-

close estimator, as the ultimate efficiency measure. It is obvious that there can be major 

differences between volatility estimators due to their characteristics and specificities. One of 

the first to observe significant differences between range-based volatility estimators are Duque 

and Paxson (1997) who conclude that the choice of the range based volatility estimator is 

important for the significance of the estimator, which in their analysis was measured with the 

coefficient of efficiency. However, besides the fact that the choice of the estimator is of crucial 

importance, it is important to notice that the choice of the volatility benchmark model and the 

accompanying choice of the ranking methodology are perhaps even more important.  

 

This chapter presents the results for each index based on various ranking methodologies. The 

first section discusses the results of the efficiency coefficient versus the close-to-close 

estimator as a widely used benchmark. Since the TTSE is a robust and unbiased benchmark of 

the integrated volatility, the coefficient of efficiency is adapted and compared against the TTSE 

in the second step. Next, various efficiency gain functions are discussed in sections 7.2 through 

7.5. The Mincer-Zarnowitz regression, the loss function approach and the linear correlation 

results are common efficiency gain functions that can be found in the literature. The tail 

dependence approach is proposed as a fifth measure, which gives more information on the 

correlation of extreme movements that can only be found in the tails of the distributions. In 

section 7.6 the ranking results are summarized for conclusion. The final section drafts a 

conclusion based on the ranking analysis. 
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7.1 Results based on the Coefficient of efficiency approach 

The coefficient of efficiency measures the relative variance of an alternative volatility 

estimator against the variance of the benchmark volatility estimator. A widely used benchmark 

for the efficiency ratio is the daily squared return, i.e. the close-to-close volatility estimator. 

This benchmark model is fairly easy to implement, but has the major disadvantage of not being 

a robust and unbiased estimator of the integrated variance. A robust and unbiased estimator of 

the integrated variance, also known as the ‘true’ variance, is the TTSE model. This model is 

also used as the benchmark volatility model throughout of this Thesis. The efficiency 

coefficient analysis is performed with two different volatility benchmark models and is shown 

in Table 7-1.  

Table 7-1 shows the coefficient of efficiency for .BETI and .BUX. The benchmark model on the 

left panel is the close-to-close estimator and on the right panel it is the TTSE estimator. 
.BETI     CC       TTSE     

O/N 

jumps 

Volatility 

estimator   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016 

E
x

cl
u

d
ed

 

Daily            1.00            1.00               1.00             0.54            0.55            0.32  

CO            1.00            1.00               1.00             0.54            0.55            0.32  

COC            1.00            1.00               1.00             0.54            0.55            0.32  

HL            0.71            0.73               0.57             0.38            0.40            0.19  

Park            1.97            2.01               1.59             1.07            1.10            0.51  

RS            1.55            1.53               1.78             0.84            0.83            0.57  

GK            2.27           2.32               1.83             1.23           1.26           0.59  

in
cl

u
d

ed
 

HL            0.71            0.73               0.57             0.38            0.40            0.19  

Park*            1.97            2.01               1.59             1.07            1.10            0.51  

RS*            1.55            1.53               1.78             0.84            0.83            0.57  

GK*            2.27            2.32               1.83             1.23            1.26            0.59  

YZ            0.68            0.68               0.69             0.37            0.37            0.22  

  TTSE            1.85            1.83               3.10             1.00            1.00            1.00  

.BUX     CC       TTSE     

O/N 

jumps 

Volatility 

estimator   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016 

ex
cl

u
d

ed
 

Daily            1.00            1.00               1.00             0.33            0.33            0.31  

CO            1.40            1.51               1.02             0.47            0.50            0.32  

COC            1.20            1.25               1.02             0.40            0.41            0.32  

HL            0.75            0.77               0.67             0.25            0.26            0.21  

Park            2.08            2.14               1.86             0.70            0.71            0.58  

RS            2.01            1.98               2.31             0.67            0.66            0.72  

GK            2.17           2.17               2.28             0.73           0.72            0.71  

in
cl

u
d

ed
 

HL            0.70            0.71               0.67             0.23            0.24            0.21  

Park*            1.60            1.60               1.84             0.54            0.53            0.58  

RS*            1.59            1.56               2.27             0.53            0.52            0.71  

GK*            1.66            1.64               2.25             0.56            0.54            0.70  

YZ            0.91            0.94               0.84             0.30            0.31            0.26  
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  TTSE            2.99            3.02               3.20             1.00            1.00            1.00  

In the first step the daily squared return (or the close-to-close volatility estimator) is used as 

the benchmark model. Secondly, the analysis is repeated with the TTSE. The efficiency 

coefficient is calculated for each of the 6 indices. The panel denoted with “CC” shows the 

results when the close-to-close estimator is chosen as the benchmark and the panel denoted 

with “TTSE” shows the results when the TTSE is chosen as the benchmark for the efficiency 

coefficient analysis. The bolded numbers in figures 7-1 through 7-3 indicate the maximum 

coefficient of efficiency for each of the 6 indices for each of the 3 different periods of time and 

2 different benchmarks. The benchmark estimators have an efficiency of 1 by default and have 

therefore been excluded from the ranking analysis. 

 

The coefficient of efficiency either increases or decreases with alternative volatility estimators. 

The coefficient of efficiencies shows that the choice of the volatility benchmark does not 

influence the ranking order of the volatility estimators. For example, the bolded volatility 

estimators for the .BUX index have the highest efficiency coefficient.  

 

Based on the close-to-close benchmark the best volatility estimator is the Garman and Klass 

across all 3 periods of time. We exclude the TTSE from this analysis as the TTSE is a 

benchmark model. The second best volatility estimator is Parkinson and the third best is Roger 

and Satchel. The same ranking result holds for the case when the TTSE is chosen as the 

benchmark model. Although this is an expected outcome since the efficiency coefficient only 

changes linearly by changing the benchmark, it is interesting to compare the levels of the 

efficiency coefficients based on the two benchmarks.  

Clearly the efficiency of the alternative estimators is lower when the unbiased TTSE estimator 

is applied. This is somehow also an expected outcome as the daily squared return is a biased 

benchmark of the integrated volatility. 

 

Note that the intraday price observations in .BETI (table 7-1) and .SOFIX (table 7-2) did not 

include overnight returns in the data base. Therefore the results of the non-extended estimators 

are equal to the results that are based on the extended estimators. 

 

 



 

62 

 

Table 7-2 Results of the coefficient of efficiency for .CRBX and .PX. The benchmark model on 

the left panel is the close-to-close estimator and on the right panel it is the TTSE estimator. 
.CRBX     CC       TTSE     

O/N 

jumps 

Volatility 

estimator   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016 

ex
cl

u
d

ed
 

Daily            1.00            1.00               1.00             0.80            0.80            0.51  

CO            0.98            0.98               1.04             0.78            0.78            0.52  

COC            0.81            0.81               1.03             0.65            0.65            0.52  

HL            0.76            0.76               0.71             0.60            0.62            0.36  

Park            2.10            2.12               1.96             1.68            1.71            0.99  

RS            2.00            2.00               2.43             1.60            1.61            1.22  

GK            2.76           2.80               2.47             2.20           2.25           1.24  

in
cl

u
d

ed
 

HL            0.65            0.65               0.71             0.52            0.53            0.36  

Park*            1.31            1.30               1.95             1.05            1.05            0.98  

RS*            1.35            1.34               2.40             1.08            1.08            1.21  

GK*            1.49            1.48               2.44             1.19            1.19            1.23  

YZ            1.00            1.02               0.97             0.80            0.82            0.49  

  TTSE            1.25            1.24               1.99             1.00            1.00            1.00  

.PX     CC       TTSE     

O/N 

jumps 

Volatility 

estimator   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016 

ex
cl

u
d

ed
 

Daily            1.00            1.00               1.00             0.55            0.60            0.23  

CO            1.43            1.59               1.06             0.79            0.95            0.24  

COC            1.22            1.28               1.05             0.68            0.77            0.24  

HL            0.76            0.75               0.77             0.42            0.45            0.17  

Park            2.11            2.09               2.13             1.16            1.25            0.48  

RS            1.50            1.39               2.64             0.83            0.83            0.60  

GK            2.02            1.90               2.76             1.12            1.14            0.62  

in
cl

u
d

ed
 

HL            0.71            0.69               0.77             0.39            0.42            0.17  

Park*            1.62            1.55               2.12             0.90            0.93            0.48  

RS*            1.31            1.21               2.64             0.72            0.72            0.60  

GK*            1.60            1.49               2.74             0.88            0.89            0.62  

YZ            2.24           2.09               5.46             1.24           1.25           1.24  

  TTSE            1.81            1.67               4.42             1.00            1.00            1.00  

 

Across the different indices we find that in most cases the Garman-Klass or the Yang-Zhang 

model show the maximum gain in efficiency. For the indices .PX and .SOFIX it is beneficial 

to include the overnight returns by applying the Yang-Zhang estimator as it increases the 

coefficient of efficiency. All other indices do not require overnight returns to reach maximum 

efficiency with the Garman-Klass estimator. One exception being .BUX during the second half 

of the empirical study where the Roger-Satchell model results in a higher efficiency gain than 

the Garman-Klass. 
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Table 7-3 Results of the coefficient of efficiency for .SOFIX and .WIG. The benchmark model on 

the left panel is the close-to-close estimator and on the right panel it is the TTSE estimator. 
.SOFIX     CC       TTSE     

O/N 

jumps 

Volatility 

estimator   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016 

ex
cl

u
d

ed
 

Daily            1.00            1.00               1.00             0.84            0.55            0.99  

CO            1.00            1.00               1.00             0.84            0.55            0.99  

COC            1.00            1.00               1.00             0.84            0.55            0.99  

HL            0.54            0.60               0.48             0.45            0.33            0.50  

Park            1.49            1.68               1.34             1.24            0.92            1.40  

RS            1.09            1.51               0.88             0.91            0.83            0.95  

GK            1.48            1.82               1.26             1.24            1.00            1.34  

in
cl

u
d

ed
 

HL            0.54            0.60               0.48             0.45            0.33            0.50  

Park*            1.49            1.67               1.34             1.24            0.92            1.40  

RS*            1.09            1.51               0.88             0.91            0.83            0.95  

GK*            1.48            1.82               1.26             1.24            1.00            1.34  

YZ            2.37           3.09               1.97             1.98           1.70           2.11  

  TTSE            1.20            1.82               0.94             1.00            1.00            1.00  

.WIG     CC       TTSE     

O/N 

jumps 

Volatility 

estimator   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016 

ex
cl

u
d

ed
 

Daily            1.00            1.00               1.00             0.40            0.43            0.30  

CO            1.30            1.24               1.47             0.52            0.53            0.44  

COC            1.11            1.05               1.31             0.44            0.45            0.39  

HL            0.65            0.60               0.89             0.26            0.26            0.27  

Park            1.81            1.66               2.48             0.72            0.71            0.75  

RS            1.72            1.54               2.69             0.68            0.66            0.81  

GK            1.86           1.67               2.80             0.74           0.72           0.84  

in
cl

u
d

ed
 

HL            0.61            0.56               0.82             0.24            0.24            0.25  

Park*            1.39            1.28               1.87             0.55            0.55            0.56  

RS*            1.35            1.23               1.96             0.54            0.53            0.59  

GK*            1.42            1.30               2.01             0.56            0.56            0.61  

YZ            0.70            0.63               1.01             0.28            0.27            0.31  

  TTSE            2.51            2.32               3.32             1.00            1.00            1.00  

 

Only .BUX and .WIG show efficiency coefficients lower than 1 when the TTSE benchmark is 

used instead of the close-to-close benchmark model. This means that the efficiency coefficient 

does not indicate an increase in efficiency when alternative estimators are used instead of the 

benchmark. Another general observation is that when the TTSE benchmark is used instead the 

efficiency coefficient becomes lower compared to the case when the close-to-close benchmark 

is used. Compared to the efficiency coefficients found in the literature, a review based on the 

daily squared return can be found in table 3-2, we find much lower efficiency coefficients for 

the relevant estimators. This indicates that the efficiency coefficients clearly depend on the 

index and the chosen benchmark. Finally, we conclude that in almost all cases the efficiency 

coefficient did not show major variety between different periods of time. The advantage of the 
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efficiency coefficient based on the daily squared return is that the ranking results will be 

comparable to the case when the TTSE is used and, based on the 3 periods of time, the results 

show to be robust. The results are in favour of the first hypothesis which states that range-

based volatility estimators are appropriate models to estimate the ‘true’ volatility of stock 

indices. Across all indices and time periods we find evidence of range-based volatility 

estimators that support this hypothesis. In the alternative case either the daily squared return 

or the open-to-close estimator would show a better efficiency coefficient. However we find 

poor support for the alternative hypothesis, H.1.1, which states that range-based volatility 

estimators are different from each other, as the results show stability across time periods.  

7.2 Results based on the Mincer Zarnowitz Regression analysis 

Tables 7-4 and 7-5 show the coefficient of determination resulting from the Mincer-Zarnowitz 

regression for each of the indices. The analysis is performed for three different periods. The 

analysis of the regression analysis includes estimates based on daily horizon and estimates 

based on a horizon of 10 trading days. The reason for the additional analysis is to investigate 

the robustness of the results based on different time periods and a different estimation horizon. 

Appendix 3 can be consulted for more detailed information on the estimated parameters and 

the standard errors. 

 

In general, the coefficients of determination based on a 10-day horizon exceeds the coefficients 

of determination based on a 1-day horizon. This indicates that there is a clear benefit in using 

a longer horizon for estimating the realized volatility. In most cases different sub periods also 

result in different optimal estimators. In most cases the lowest results are noted in the second 

sub-period, while the highest results are noted in the first sub-period. Since the recorded 

intraday data for .BETI and .SOFIX didn’t include any overnight price movements, the 

extended versions of the range-based estimators show exactly identical results. 

 

Based on the results of the total period, Parkinson results in the highest determination 

coefficient (0.62) for .Beti, Garman-Klass (0.57) for .BUX, High-Low (0.41) for .CRBX, 

Garman-Klass extended (0.56) for .PX, and Garman-Klass (0.55 and 0.59) for .SOFIX and 
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.WIG20, respectively. In case of the .WIG index the Garman-Klass estimator shows the highest 

coefficient of determination for all sub-periods and estimation horizons.  

Table 7-4: The coefficient of determination, R^2, for the .BETI, .BUX and .CRBX indices of the 

encompassing Mincer-Zarnowitz regression on the daily realized volatility proxies. The (*) 

denotes the extended version of the volatility estimators that includes overnight jumps. 
Indices  1 day horizon   10 day horizon 

.BETI 
Volatility 

estimator   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016 

 O
/N

  
ju

m
p

s 

ex
cl

u
d

ed
  
  

  
  
  

  
  
  

  
  
  

  
  

  
  
 

Daily   0.2107 0.2106 0.1398   0.6418 0.6846 0.3238 

CO   0.2107 0.2106 0.1398   0.6418 0.6846 0.3238 

COC   0.2107 0.2106 0.1398   0.6418 0.6846 0.3238 

HL   0.6213 0.6837 0.3681   0.8270 0.9255 0.4418 

Park   0.6213 0.6837 0.3681   0.8270 0.9255 0.4418 

RS   0.2929 0.3206 0.1477   0.6500 0.7393 0.2803 

GK   0.6011 0.6881 0.3146   0.7974 0.9178 0.3916 

O
/N

 j
u

m
p

s 

in
cl

u
d

ed
 

HL*   0.6213 0.6837 0.3681   0.8270 0.9255 0.4418 

Park*   0.6213 0.6837 0.3681   0.8270 0.9255 0.4418 

RS*   0.2929 0.3206 0.1477   0.6500 0.7393 0.2803 

GK*   0.6011 0.6881 0.3146   0.7974 0.9178 0.3916 

YZ   0.2132 0.2015 0.0233   0.5853 0.6214 0.1534 

.BUX                 

O
/N

  
ju

m
p

s 
  

 

ex
cl

u
d

ed
 

Daily   0.0705 0.0526 0.0903   0.4760 0.4244 0.4546 

CO   0.0906 0.0825 0.1061   0.5093 0.5647 0.4564 

COC   0.1218 0.0981 0.1071   0.6311 0.6199 0.4747 

HL   0.5219 0.5346 0.4359   0.8680 0.9080 0.7432 

Park   0.5219 0.5346 0.4359   0.8680 0.9080 0.7432 

RS   0.3866 0.4439 0.1877   0.8332 0.8698 0.5888 

GK   0.5658 0.5852 0.4309   0.8901 0.9185 0.7292 

O
/N

 j
u

m
p

s 

in
cl

u
d

ed
 

HL*   0.5099 0.4935 0.4348   0.8906 0.9047 0.7538 

Park*   0.4240 0.3682 0.4115   0.8446 0.8296 0.7284 

RS*   0.3585 0.3665 0.1762   0.8125 0.8323 0.5342 

GK*   0.4488 0.4067 0.3929   0.8442 0.8452 0.6766 

YZ   0.1624 0.1571 0.0247   0.5917 0.5970 0.2098 

.CRBX                 

 O
/N

  
ju

m
p

s 

ex
cl

u
d

ed
  
  

  
  
  

  
  
  

  
  
  

  
  

  
  
 

Daily   0.1386 0.1431 0.0547   0.4316 0.3839 0.2142 

CO   0.1179 0.1149 0.0514   0.5649 0.5553 0.2040 

COC   0.0980 0.0885 0.0535   0.5624 0.5407 0.2138 

HL   0.4097 0.3853 0.3199   0.7930 0.7997 0.4121 

Park   0.4097 0.3853 0.3199   0.7930 0.7997 0.4121 

RS   0.1977 0.1674 0.1804   0.5213 0.4376 0.4403 

GK   0.3758 0.3387 0.3460   0.7141 0.6737 0.4786 

O
/N

 j
u

m
p

s 

in
cl

u
d

ed
 

HL*   0.3475 0.3089 0.3237   0.7609 0.7456 0.4190 

Park*   0.2616 0.2148 0.3204   0.6620 0.6162 0.4240 

RS*   0.1294 0.0960 0.1949   0.4302 0.3526 0.4393 

GK*   0.2187 0.1675 0.3470   0.5596 0.4877 0.4833 
YZ   0.0484 0.0282 0.0150   0.4408 0.3632 0.2174 

.  
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Table 7-5 shows the coefficient of determination, R^2, for the .PX, .SOFIX and .WIG indices of 

the encompassing Mincer-Zarnowitz regression on the daily realized volatility proxies. The * 

denotes the extended version of the volatility estimators that includes overnight jumps.  

Indices  1 day horizon   10 day horizon 

.PX 
Volatility 

estimator 
  

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016 
  

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016 

 O
/N

  
ju

m
p

s 

ex
cl

u
d

ed
  
  

  
  
  

  
  
  

  
  
  

  
  

  
  
 

Daily   0.1375 0.1737 0.0774   0.5089 0.6002 0.3849 

CO   0.0382 0.0417 0.0735   0.2877 0.4570 0.3749 

COC   0.1599 0.2183 0.0746   0.5688 0.7187 0.3763 

HL   0.2353 0.2885 0.2880   0.5213 0.7348 0.6009 

Park   0.2353 0.2885 0.2880   0.5213 0.7348 0.6009 

RS   0.1311 0.1836 0.0943   0.4338 0.5942 0.4229 

GK   0.2453 0.3037 0.2688   0.5148 0.7014 0.5966 

O
/N

 j
u

m
p

s 

in
cl

u
d

ed
 

HL*   0.4055 0.5069 0.2887   0.6894 0.8494 0.6015 

Park*   0.5315 0.6197 0.2891   0.8298 0.9081 0.6023 

RS*   0.4261 0.5484 0.1022   0.7910 0.8520 0.4295 

GK*   0.5612 0.6431 0.2725   0.8463 0.8992 0.5999 

YZ   0.1504 0.1449 0.0336   0.5570 0.5642 0.2655 

.SOFIX                 

 O
/N

  
ju

m
p

s 

ex
cl

u
d

ed
  
  

  
  
  

  
  
  

  
  
  

  
  

  
  
 

Daily   0.1211 0.1370 0.1106   0.4202 0.3878 0.5203 

CO   0.1211 0.1370 0.1106   0.4202 0.3878 0.5203 

COC   0.1211 0.1370 0.1106   0.4202 0.3878 0.5203 

HL   0.5460 0.5188 0.5844   0.7312 0.6774 0.8238 

Park   0.5460 0.5188 0.5844   0.7312 0.6774 0.8238 

RS   0.3583 0.2987 0.4160   0.6904 0.5928 0.7759 

GK   0.5498 0.5146 0.5885   0.7407 0.6755 0.8248 

O
/N

 j
u

m
p

s 

in
cl

u
d

ed
 

HL*   0.5460 0.5188 0.5844   0.7312 0.6774 0.8238 

Park*   0.5460 0.5188 0.5844   0.7312 0.6774 0.8238 

RS*   0.3583 0.2987 0.4160   0.6904 0.5928 0.7759 

GK*   0.5498 0.5146 0.5885   0.7407 0.6755 0.8248 

YZ   0.0598 0.0390 0.0760   0.4070 0.2676 0.5292 

.WIG                   

 O
/N

  
ju

m
p

s 

ex
cl

u
d

ed
  
  

  
  
  

  
  
  

  
  
  

  
  

  
  
 

Daily   0.0542 0.0593 0.0427   0.0545 0.0596 0.0427 

CO   0.1058 0.1140 0.0911   0.1065 0.1151 0.0911 

COC   0.1171 0.1304 0.0807   0.1180 0.1319 0.0807 

HL   0.5603 0.6125 0.4490   0.5615 0.6143 0.4490 

Park   0.5603 0.6125 0.4490   0.5615 0.6143 0.4490 

RS   0.4097 0.4825 0.2630   0.4158 0.4924 0.2630 

GK   0.5933 0.6548 0.4578   0.5938 0.6554 0.4578 

O
/N

 j
u

m
p

s 

in
cl

u
d

ed
 

HL*   0.5114 0.5633 0.3893   0.5125 0.5650 0.3893 

Park*   0.3738 0.4126 0.2681   0.3757 0.4155 0.2681 

RS*   0.3211 0.3866 0.1771   0.3228 0.3893 0.1771 

GK*   0.3836 0.4342 0.2559   0.3855 0.4372 0.2559 

YZ   0.1026 0.1383 0.0355   0.1033 0.1395 0.0355 

 

 



 

         67 

7.3 Results based on the loss function approach 

The MSE and QLike metrics have been calculated for each of the 6 indices and for 3 different 

time periods. The results of the MSE loss function are presented in tables 7-6 through 7-8. The 

results of the QLike loss function are presented in tables 7-9 through 7-11. For each time period 

the lowest MSE and QLike values are bolded. Table 7-6 shows the results of the loss function 

approach for the .BETI and .BUX indices. 

Table 7-6 Results of the MSE analysis for .BETI and .BUX with different periods. 

      .BETI       .BUX     

O/N 

jumps 

Volatility 

estimator   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016 

 O
/N

  
ju

m
p

s 

ex
cl

u
d

ed
  
  

  
  
  

  
  
  

  
  
  

  
  

  
  
 

Daily   1.133% 1.725% 0.540%   1.593% 2.228% 0.946% 

CO   1.133% 1.725% 0.540%   1.145% 1.411% 0.874% 

COC   1.133% 1.725% 0.540%   1.229% 1.597% 0.854% 

HL   1.315% 1.637% 0.990%   2.202% 2.691% 1.703% 

Park   0.226% 0.301% 0.150%   0.229% 0.276% 0.181% 

RS   0.532% 0.818% 0.244%   0.315% 0.368% 0.261% 

GK   0.248% 0.353% 0.142%   0.182% 0.227% 0.135% 

O
/N

 j
u

m
p

s 

in
cl

u
d

ed
 

HL   1.315% 1.637% 0.990%   2.642% 3.497% 1.769% 

Park*   0.226% 0.301% 0.150%   0.467% 0.722% 0.207% 

RS*   0.532% 0.818% 0.244%   0.499% 0.716% 0.276% 

GK*   0.248% 0.353% 0.142%   0.404% 0.642% 0.161% 

YZ   0.541% 0.832% 0.250%   0.556% 0.825% 0.282% 

 

Table 7-7 shows the results of the loss function approach for the .CRBX and .PX indices. 

Table 7-7 Results of the MSE analysis for .CRBX and .PX with different periods 
      .CRBX       .PX     

O/N 

jumps 

Volatility 

estimator   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016 

 O
/N

  
ju

m
p

s 

ex
cl

u
d

ed
  
  

  
  
  

  
  
  

  
  
  

  
  

  
  
 

Daily   0.410% 0.587% 0.231%   0.919% 1.074% 0.762% 

CO   0.448% 0.665% 0.229%   0.928% 1.135% 0.719% 

COC   0.508% 0.793% 0.220%   0.734% 0.757% 0.711% 

HL   0.472% 0.715% 0.225%   1.225% 1.126% 1.323% 

Park   0.140% 0.225% 0.054%   0.288% 0.408% 0.167% 

RS   0.233% 0.388% 0.075%   0.417% 0.621% 0.213% 

GK   0.153% 0.255% 0.051%   0.275% 0.428% 0.121% 

O
/N

 j
u

m
p

s 

in
cl

u
d

ed
 

HL   0.550% 0.865% 0.228%   1.289% 1.246% 1.332% 

Park*   0.208% 0.361% 0.053%   0.183% 0.197% 0.169% 

RS*   0.297% 0.519% 0.071%   0.234% 0.262% 0.206% 

GK*   0.220% 0.388% 0.049%   0.148% 0.174% 0.120% 

YZ   0.305% 0.528% 0.079%   0.353% 0.541% 0.164% 
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The MSE results show that only the Parkinson and the Garman and Klass models have the 

lowest values across the different indices and time periods. Only for the .PX index we find 

evidence that overnight returns have and added value to the Garman and Klass estimator. The 

Garman and Klass estimator excluding overnight returns is supported with the lowest MSE for 

.BUX and .WIG. Parkinson has the lowest MSE for .SOFIX, .BUX and .CRBX. Only in the 

second period we find that the Garman and Klass model has the lowest MSE for .BUX and 

.CRBX. Table 7-8 shows the results of the loss function approach for the .CRBX and .PX 

indices. 

 

Table 7-8 Results of the MSE analysis for .SOFIX and .WIG20 with different periods. 

      .SOFIX       .WIG20     

O/N 

jumps 

Volatility 

estimator   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016 

 O
/N

  
ju

m
p

s 

ex
cl

u
d

ed
  
  

  
  
  

  
  
  

  
  
  

  
  

  
  
 

Daily   0.718% 0.758% 0.680%   1.303% 1.512% 1.090% 

CO   0.718% 0.758% 0.680%   0.882% 1.026% 0.735% 

COC   0.718% 0.758% 0.680%   0.951% 1.136% 0.762% 

HL   0.677% 0.843% 0.512%   1.486% 1.736% 1.231% 

Park   0.173% 0.168% 0.178%   0.155% 0.175% 0.134% 

RS   0.292% 0.301% 0.283%   0.231% 0.266% 0.195% 

GK   0.179% 0.170% 0.189%   0.128% 0.145% 0.112% 

O
/N

 j
u

m
p

s 

in
cl

u
d

ed
 

HL   0.677% 0.843% 0.512%   1.935% 2.355% 1.506% 

Park*   0.173% 0.168% 0.178%   0.394% 0.504% 0.281% 

RS*   0.292% 0.301% 0.283%   0.413% 0.520% 0.304% 

GK*   0.179% 0.170% 0.189%   0.355% 0.458% 0.251% 

YZ   0.390% 0.367% 0.413%   1.925% 2.450% 1.389% 

 

Results based on the QLIKE loss function show similar outcome as the MSE loss function. 

Only the Parkinson and Garman and Klass model show lowest MSE for all indices across all 

periods. There is evidence to include overnight returns in the estimator in case of the .PX index. 

This is also supported for the second half of the investigated period in case of the .CRBX index. 

The Parkinson model shows the lowest MSE for both .BETI and .SOFIX across all investigated 

periods, while the Garman and Klass model shows the lowest MSE for .BUX and .WIG across 

all periods.  
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Table 7-9 Results of the QLIKE loss function for .BETI and .BUX with different periods. 
      .BETI       .BUX     

O/N 

jumps 

Volatility 

estimator   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016 

 O
/N

  
ju

m
p

s 

ex
cl

u
d

ed
  
  

  
  
  

  
  
  

  
  
  

  
  

  
  
 

Daily   24.939% 23.996% 25.912%  120.611% 111.525% 129.841% 

CO   24.939% 23.996% 25.912%  136.873% 141.495% 132.110% 

COC   24.939% 23.996% 25.912%  63.524% 48.269% 79.099% 

HL   4.831% 3.622% 6.057%  38.495% 34.605% 42.528% 

Park   1.925% 1.906% 1.960%  7.562% 6.599% 8.559% 

RS   5.248% 5.928% 4.555%  14.849% 11.476% 18.265% 

GK   2.125% 2.241% 2.016%  7.163% 6.344% 7.990% 

O
/N

 j
u

m
p

s 

in
cl

u
d

ed
 

HL   4.831% 3.622% 6.057%  43.412% 42.451% 44.456% 

Park*   1.925% 1.906% 1.960%  10.475% 11.560% 9.384% 

RS*   5.248% 5.928% 4.555%  29.432% 16.098% 43.508% 

GK*   2.125% 2.241% 2.016%  9.739% 10.778% 8.671% 

YZ   2.733% 2.405% 3.064%  17.055% 18.801% 15.295% 

Table 7-10 Results of the QLIKE loss function for .CRBX and .PX with different periods. 
      .CRBX       .PX     

O/N 

jumps 

Volatility 

estimator   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016 

 O
/N

  
ju

m
p

s 

ex
cl

u
d

ed
  
  

  
  
  

  
  
  

  
  
  

  
  

  
  
 

Daily   27.158% 26.568% 27.803%   21.243% 18.891% 23.577% 

CO   26.589% 24.867% 28.408%   23.584% 23.356% 23.785% 

COC   20.514% 20.719% 20.396%   13.208% 8.355% 18.064% 

HL   3.828% 4.197% 3.452%   6.496% 4.785% 8.215% 

Park   1.933% 2.014% 1.858%   2.389% 2.984% 1.789% 

RS   3.976% 4.758% 3.188%   4.783% 5.384% 4.176% 

GK   2.000% 2.212% 1.789%   2.566% 3.522% 1.604% 

O
/N

 j
u

m
p

s 

in
cl

u
d

ed
 

HL   3.892% 4.277% 3.502%   6.759% 5.248% 8.277% 

Park*   1.883% 2.016% 1.757%   1.689% 1.573% 1.803% 

RS*   6.504% 9.121% 3.869%   5.353% 4.282% 6.422% 

GK*   1.958% 2.227% 1.690%   1.638% 1.679% 1.596% 
YZ   2.666% 3.300% 2.026%   2.730% 2.857% 2.600% 

 

Table 7-11 Results of the QLIKE loss function for .SOFIX and .WIG with different periods. 
      .SOFIX       .WIG20     

O/N 

jumps 

Volatility 

estimator   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016   

4-1-2010  

1-4-2016 

4-1-2010  

15-2-2013 

15-2-2013  

1-4-2016 

 O
/N

  
ju

m
p

s 

ex
cl

u
d

ed
  
  

  
  
  

  
  
  

  
  
  

  
  

  
  
 

Daily   31.118% 32.318% 29.867%  26.008% 23.238% 28.848% 

CO   31.118% 32.318% 29.867%  26.474% 25.127% 27.838% 

COC   31.118% 32.318% 29.867%  9.823% 8.265% 11.428% 

HL   3.034% 3.422% 2.658%  5.711% 5.536% 5.892% 

Park   2.292% 2.124% 2.465%  1.201% 1.130% 1.273% 

RS   4.483% 3.975% 4.996%  2.553% 2.635% 2.465% 

GK   2.583% 2.363% 2.807%  1.144% 1.080% 1.210% 

O
/N

 

ju
m

p
s 

in
cl

u
d

ed
 

HL   3.034% 3.422% 2.658%  7.262% 7.333% 7.184% 

Park*   2.292% 2.124% 2.465%  2.125% 2.189% 2.056% 

RS*   4.483% 3.975% 4.996%  3.219% 3.134% 3.303% 
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GK*   2.583% 2.363% 2.807%  2.015% 2.088% 1.936% 

YZ   3.185% 3.158% 3.210%  7.036% 7.023% 7.041% 

          

7.4 Pearson Correlation Coefficients 

The Pearson correlation coefficient is calculated for three different periods and for each of the 

range-based volatility estimates. Tables 7-12, 7-13 and 7-14 show the results for the .BETI, 

.BUX, .CRBX, .PX, .SOFIX and .WIG20 indices. Each table shows the results for three 

different periods, denoting the January 2010 to April 2016, January 2010 to February 2013 and 

February 2013 to April 2016.  

Table 7-12 presents empirical results of the Pearson correlation function for .BETI and .BUS 

given three different periods. 

      .BETI       .BUX     

O/N 

jumps 

Volatility 

estimator 
  

4/1/2010 4/1/2010 15-2-2013 
  

4/1/2010 4/1/2010 15-2-2013 

1/4/2016 15-2-2013 1/4/2016 1/4/2016 15-2-2013 1/4/2016 

ex
cl

u
d

ed
 

Daily   0.6240 0.6135 0.7765   0.4428 0.3853 0.7064 

CO   0.6240 0.6135 0.7765   0.5200 0.4767 0.7180 

COC   0.6240 0.6135 0.7765   0.5333 0.4826 0.7170 

HL   0.9124 0.9249 0.8772   0.8373 0.8279 0.8770 

Park   0.9124 0.9249 0.8772   0.8373 0.8279 0.8770 

RS   0.7879 0.7904 0.7914   0.8882 0.8988 0.7902 

GK   0.9131 0.9283 0.8513   0.8998 0.9002 0.8759 

in
cl

u
d

ed
 

HL*   0.9124 0.9249 0.8772   0.8324 0.8178 0.8760 

Park*   0.9124 0.9249 0.8772   0.7619 0.7334 0.8687 

RS*   0.7879 0.7904 0.7914   0.8222 0.8208 0.7740 

GK*   0.9131 0.9283 0.8513   0.8122 0.7978 0.8601 

YZ   0.4351 0.4245 0.4016   0.5830 0.6099 0.3032 

 

The upper panel of the tables show the results for the range-based volatility estimates that 

exclude overnight returns. The lower panel of the tables shows the results for the estimates that 

include overnight returns. The bolded figures indicate the highest correlation coefficient for 

each of the investigated time periods. 

 

Note that the only difference between the Parkinson range-based volatility estimate (eq. 3-8) 

and the High-Low volatility estimate (eq. 3-9) is a constant factor in the Parkinson estimate. 

Therefore the Pearson correlation between these two estimates is expected to be equal.  
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Table 7-13 presents empirical results of the Pearson correlation function for .CRBX and .PX 

given three different periods. 

      .CRBX       .PX     

O/N 

jumps 

Volatility 

estimator 
  

4/1/2010 4/1/2010 15-2-2013 
  

4/1/2010 4/1/2010 15-2-2013 

1/4/2016 15-2-2013 1/4/2016 1/4/2016 15-2-2013 1/4/2016 

ex
cl

u
d

ed
 

Daily   0.8080 0.8126 0.5160   0.5314 0.5384 0.5727 

CO   0.7750 0.7779 0.4981   0.3843 0.4045 0.5714 

COC   0.6466 0.6443 0.5019   0.5760 0.6054 0.5721 

HL   0.8013 0.8196 0.6708   0.7193 0.7506 0.7139 

Park   0.8218 0.8239 0.6708   0.7193 0.7506 0.7139 

RS   0.4221 0.4076 0.6596   0.7283 0.7427 0.5814 

GK   0.6529 0.6466 0.7091   0.7466 0.7620 0.7089 

in
cl

u
d

ed
 

HL*   0.7076 0.7033 0.6735   0.8136 0.8446 0.7143 

Park*   0.5142 0.5041 0.6743   0.8802 0.8991 0.7149 

RS*   0.2864 0.2711 0.6622   0.8968 0.9088 0.5844 

GK*   0.3557 0.3408 0.7003   0.9145 0.9249 0.7109 

YZ   0.2518 0.2356 0.2206   0.5054 0.4855 0.3731 

 

Table 7-14 presents empirical results of the Pearson correlation function for .SOFIX and .WIG20 

given three different periods. 

      .SOFIX       .WIG20     

O/N 

jumps 

Volatility 

estimator 
  

4/1/2010 4/1/2010 15-2-2013 
  

4/1/2010 4/1/2010 15-2-2013 

1/4/2016 15-2-2013 1/4/2016 1/4/2016 15-2-2013 1/4/2016 

ex
cl

u
d

ed
 

Daily   0.5471 0.5979 0.5624   0.5113 0.5194 0.4929 

CO   0.5471 0.5979 0.5624   0.6129 0.6101 0.6193 

COC   0.5471 0.5979 0.5624   0.6257 0.6244 0.6092 

HL   0.8251 0.8180 0.8546   0.8639 0.8740 0.8068 

Park   0.8251 0.8180 0.8546   0.8639 0.8740 0.8068 

RS   0.8094 0.7498 0.8308   0.8800 0.9039 0.7496 

GK   0.8266 0.8129 0.8428   0.8901 0.9046 0.8125 

in
cl

u
d

ed
 

HL*   0.8251 0.8180 0.8546   0.8564 0.8688 0.7834 

Park*   0.8251 0.8180 0.8546   0.7916 0.8068 0.6972 

RS*   0.8094 0.7498 0.8308   0.8149 0.8458 0.6362 

GK*   0.8266 0.8129 0.8428   0.8088 0.8311 0.6763 

YZ   0.4879 0.3811 0.5297   0.5168 0.5340 0.3760 

 

For .Beti and .SOFIX there were no overnight prices observed. Therefore the correlation of the 

extended estimates is equal to the correlation of the non-extended ones. This also holds for the 

close-to-open-to-close estimator, which would result in an equal correlation coefficient as the 

close-to-open estimator. The results show that in all cases either the Parkinson or the Garman 

and Klass estimates show the highest correlation with the TTSE benchmark. Only in the case 
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of .PX we find evidence that overnight returns add value to the estimates. Analysing the results 

based on the entire period we find that the Garman and Klass estimates show the highest 

correlation coefficient in all cases except for .CRBX where the Parkinson model shows a better 

results. The second half of the investigated period shows that a change in range-based volatility 

model would result in a higher correlation in almost all cases except for .WIG. 

7.5 Results based on the Tail Dependence approach 

The results of the tail dependence estimates are presented in Tables 7-15 through 7-20. The 

left panel in each of the tables presents the tail dependence coefficients based on the Gumbel 

or Rotated Taylor Copula function. The panel on the right presents the rankings which are 

defined as follows: the estimator with the highest tail dependence coefficient gets rank value 

13 (equals total number of estimators), while the estimator with the lowest tail dependence 

coefficient gets rank value 1. The tail dependence estimates are calculated for three different 

periods. Tables 7-15 and 7-16 present the tail dependence coefficients estimated for the 

maximum available empirical period from January 2010 to April 2016. Tables 7-17 and 7-18 

present the first sub-period from January 2010 to February 2013 and tables 7-19 and 7-20 

present the second sub-period denoting the period from February 2013 to April 2016. For each 

of the three periods the first table considers the range-based estimators that exclude overnight 

returns and the second table includes the overnight returns, either by default or with an add-

on. 

 

In general the results based on the entire empirical period, presented in the right panel of tables 

7-15 and 7-16, show that the rankings of the tail dependence coefficients based on the Gumbel 

and rotated Clayton copula are rather comparable for most of the indices. The ranking results 

between the copula functions are similar except for the .SOFIX, where the Gumbel copula 

suggests the High-Low estimator, while the rotated Clayton suggests the Garman-Klass 

estimator. For all other indices the choice of the copula function would not change the choice 

of the estimator based on the highest ranking. Our choice for the tail dependence coefficient is 

based on the Gumbel copula function, whilst for the .SOFIX index we will take into account 

the result of the rotated Clayton copula. 
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Table 7-15 shows in the left panel the tail dependence coefficients based on the Gumbel and 

rotated Clayton copula (Clayton*) function for the range-based volatility estimators that exclude 

overnight jumps during the period January 2010 – April 2016.  The panel on the right hand side 

shows the total ranking categorization based on the tail dependence coefficients shown in table 7-

15 and 7-16. 

1/4/2016 

4/1/2010 
Upper tail dependence coefficient 

  
Ranking results 

Copula SD CC CO HL Park RS GK   SD CC CO HL Park RS GK 

.BETI                               

Gumbel 0.53 0.48 0.48 0.72 0.72 0.53 0.71   7 4 4 13 13 6 9 

Clayton* 0.56 0.53 0.53 0.75 0.75 0.59 0.74   5 4 4 13 13 7 9 

.BUX                               

Gumbel 0.40 0.30 0.42 0.67 0.67 0.50 0.65   3 1 4 12 12 6 10 

Clayton* 0.38 0.31 0.46 0.71 0.71 0.58 0.70   3 1 4 12 12 7 10 

CRBX                               

Gumbel 0.27 0.36 0.33 0.63 0.63 0.58 0.64   1 3 2 9 9 6 10 

Clayton* 0.23 0.38 0.34 0.66 0.66 0.63 0.68   1 3 2 9 9 6 11 

.PX                               

Gumbel 0.41 0.45 0.29 0.45 0.45 0.28 0.41   4 5 2 8 8 1 3 

Clayton* 0.39 0.48 0.26 0.50 0.50 0.32 0.48   3 4 1 8 8 2 5 

.SOFIX                               

Gumbel 0.32 0.39 0.39 0.73 0.73 0.61 0.73   1 4 4 13 13 7 9 

Clayton* 0.38 0.44 0.44 0.79 0.79 0.70 0.79   1 4 4 11 11 7 13 

.WIG                               

Gumbel 0.46 0.33 0.30 0.61 0.61 0.47 0.63   5 2 1 11 11 6 13 

Clayton* 0.52 0.33 0.31 0.66 0.66 0.55 0.69   5 2 1 11 11 7 13 

∑ rank Gumbel           21 17 15 63 61 32 54 

∑ rank Clayton*             18 16 14 61 59 36 61 

 

Amongst the estimators that exclude overnight jumps, presented in table 7-15, the High-Low 

estimator shows the highest total ranking value of 63 across the set of indices. The average tail 

dependence coefficient of the High-Low estimator across the indices is 0.64. The second best 

ranked estimator is the Parkinson volatility estimator with a total ranking value of 61 (a slightly 

lower average tail dependence coefficient rounded at 0.63) and the Garman-Klass with a total 

ranking value of 48 (average tail dependence coefficient of 0.63). The Standard Deviation, the 

Daily Close-to-Close and Close-to-Open estimators have by far the lowest total ranking results 

of 21, 17 and 15, respectively. They also have the lowest average tail dependence coefficient 

of 0.40, 0.38 and 0.37, respectively.  
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Amongst the estimators that include overnight returns, presented in table 7-13, the High-Low 

extended, Parkinson extended and Garman-Klass extended show the highest ranking values of 

71, 66 and 60, respectively. Their average tail dependence coefficient is 0.66, 0.65 and 0.65, 

respectively. Surprisingly, the Close-to-Open-to-Close and the Yang-Zhang have the lowest 

overall ranking value amongst the estimators that include overnight returns (30 and 22, 

respectively) and the lowest average tail dependence coefficient of 0.44 and 0.44 respectively. 

The total ranking value of the extended Roger-Satchell estimator is 43 and has an average tail-

dependence coefficient of 0.55. 

Table 7-16 shows in the left panel the tail dependence coefficients based on the Gumbel and 

rotated Clayton copula (Clayton*) function for the range-based volatility estimators that include 

overnight jumps during the period January 2010 – April 2016. The panel on the right hand side 

shows the total ranking categorization based on the tail dependence coefficients shown in table 7-

15 and 7-16.  

1/4/2016 

4/1/2010 
Upper tail dependence coefficient 

  
Ranking results 

Copula  COC 
HL  

Ext 

Park  

Ext 

RS  

Ext 

GK  

Ext 

Yang 

Zhang   
COC 

HL  

Ext 

Park  

Ext 

RS  

Ext 

GK  

Ext 

Yang 

Zhang 

.BETI                           

Gumbel 0.48 0.72 0.72 0.53 0.71 0.47   4 13 13 6 9 1 

Clayton* 0.53 0.75 0.75 0.59 0.74 0.47   4 13 13 7 9 1 

.BUX                           

Gumbel 0.47 0.67 0.62 0.53 0.61 0.36   5 13 9 7 8 2 

Clayton* 0.52 0.72 0.66 0.58 0.64 0.36   5 13 9 6 8 2 

CRBX                           

Gumbel 0.37 0.64 0.65 0.60 0.66 0.46   4 11 12 7 13 5 

Clayton* 0.38 0.67 0.69 0.65 0.70 0.46   4 10 12 7 13 5 

.PX                           

Gumbel 0.54 0.60 0.66 0.52 0.62 0.45   10 11 13 9 12 6 

Clayton* 0.58 0.67 0.73 0.60 0.69 0.49   9 11 13 10 12 6 

.SOFIX                           

Gumbel 0.39 0.73 0.73 0.61 0.73 0.56   4 13 13 7 9 5 

Clayton* 0.44 0.79 0.79 0.70 0.79 0.66   4 11 11 7 13 5 

.WIG                           

Gumbel 0.41 0.62 0.54 0.49 0.55 0.37   4 12 8 7 9 3 

Clayton* 0.44 0.68 0.59 0.53 0.60 0.36   4 12 8 6 9 3 

∑ rank Gumbel           31 71 66 43 60 22 

∑ rank Clayton*           30 68 64 43 64 22 

 

When tail dependence becomes important for the individual markets we find that the Parkinson 

estimators is the best fit for the .BETI index, Garman-Klass for the WIG20., the High-Low or 
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the Garman-Klass for .SOFIX, High-Low extended for .BUX, Parkinson extended for .BETI 

and .PX, and Garman-Klass Extended for .CRBX. Since the recorded intraday data for both, 

.BETI and .SOFIX, did not include any overnight changes, there are also no differences 

between the results of the estimators that include or exclude overnight returns.  

 

The overall conclusion that can be drawn, based on the total empirical analysis of the total 

ranking values is that the extended range-based volatility estimates have a higher tail 

dependence coefficient compared to the estimates that do not include overnight returns. 

Table 7-17 shows in the left panel the tail dependence coefficients based on the Gumbel and 

rotated Clayton copula (Clayton*) function for the range-based volatility estimators that exclude 

overnight jumps during the period January 2010 – February 2013. The panel on the right hand 

side shows the total ranking categorization based on the tail dependence coefficients shown in 

table 7-17 and 7-18. 

4/1/2010 

15/2/2013 
Upper tail dependence coefficient 

  
Ranking results 

Copula SD CC CO HL Park RS GK   SD CC CO HL Park RS GK 

.BETI                               

Gumbel 0.49 0.50 0.50 0.72 0.72 0.53 0.71   2 5 5 13 13 7 9 

Clayton* 0.52 0.56 0.56 0.77 0.77 0.59 0.75   2 5 5 13 13 7 9 

.BUX                               

Gumbel 0.33 0.31 0.43 0.69 0.69 0.51 0.67   3 1 4 13 13 7 10 

Clayton* 0.29 0.35 0.47 0.74 0.74 0.61 0.73   1 3 4 13 13 7 10 

CRBX                               

Gumbel 0.15 0.38 0.36 0.64 0.64 0.59 0.65   1 3 2 8 9 6 11 

Clayton* 0.09 0.42 0.39 0.69 0.69 0.65 0.70   1 4 2 9 8 6 11 

.PX                               

Gumbel 0.41 0.48 0.33 0.55 0.55 0.37 0.51   3 5 1 8 8 2 6 

Clayton* 0.39 0.53 0.31 0.61 0.61 0.46 0.59   2 5 1 8 8 3 6 

.SOFIX                               

Gumbel 0.42 0.23 0.23 0.49 0.49 0.51 0.54   4 3 3 9 9 11 13 

Clayton* 0.54 0.23 0.23 0.59 0.59 0.61 0.63   4 3 3 9 9 11 13 

.WIG                               

Gumbel 0.48 0.33 0.31 0.63 0.63 0.49 0.65   5 2 1 10 11 6 13 

Clayton* 0.57 0.34 0.34 0.70 0.70 0.59 0.72   6 1 2 10 11 7 13 

∑ rank Gumbel               18 19 16 61 60 39 62 

∑ rank Clayton*             16 21 17 60 61 41 62 

 

The results of the tail dependence analysis based on the first sub-period, January 2010 to 

February 2013, are presented in tables 7-15 and 7-16. The results of the tail dependence 

coefficient based on the first sub-period differ from the total period results.  
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Table 7-18 shows in the left panel the tail dependence coefficients based on the Gumbel and 

rotated Clayton copula (Clayton*) function for the range-based volatility estimators that include 

overnight jumps during the period January 2010 – February 2013. The panel on the right hand 

side shows the total ranking categorization based on the tail dependence coefficients shown in 

table 7-17 and 7-18.  

4/1/2010 

15/2/2013 
Upper tail dependence coefficient 

 
Ranking results 

Copula COC 
HL  

Ext 

Park  

Ext 

RS  

Ext 

GK  

Ext 

Yang 

Zhang   
COC 

HL  

Ext 

Park  

Ext 

RS  

Ext 

GK  

Ext 

Yang 

Zhang 

.BETI                           

Gumbel 0.50 0.72 0.72 0.53 0.71 0.43   5 13 13 7 9 1 

Clayton* 0.56 0.77 0.77 0.59 0.75 0.43   5 13 13 7 9 1 

.BUX                           

Gumbel 0.45 0.68 0.62 0.50 0.59 0.32   5 11 9 6 8 2 

Clayton* 0.51 0.74 0.67 0.57 0.64 0.33   5 11 9 6 8 2 

CRBX                           

Gumbel 0.39 0.65 0.66 0.61 0.67 0.41   4 10 12 7 13 5 

Clayton* 0.43 0.70 0.71 0.67 0.73 0.41   5 10 12 7 13 3 

.PX                           

Gumbel 0.56 0.68 0.70 0.57 0.68 0.44   9 12 13 10 11 4 

Clayton* 0.61 0.74 0.77 0.66 0.75 0.51   9 11 13 10 12 4 

.SOFIX                           

Gumbel 0.23 0.49 0.49 0.51 0.54 0.49   3 9 9 11 13 9 

Clayton* 0.23 0.59 0.59 0.61 0.63 0.59   3 9 9 11 13 9 

.WIG                           

Gumbel 0.41 0.64 0.56 0.51 0.57 0.39   4 12 8 7 9 3 

Clayton* 0.46 0.70 0.62 0.56 0.63 0.40   4 12 8 5 9 3 

∑ rank Gumbel             30 67 62 48 63 24 

∑ rank Clayton*           31 64 64 46 64 22 

 

The results of the tail dependence analysis based on the second sub-period, February 2013 to 

April 2016, are presented in tables 7-16 and 7-17. The results of the tail dependence coefficient 

based on the first sub-period differ from the total period results. 

 

 

 

 

 



 

         77 

 

 

 

Table 7-19 shows in the left panel the tail dependence coefficients based on the Gumbel and 

rotated Clayton copula (Clayton*) function for the range-based volatility estimators that exclude 

overnight jumps during the period February 2013 – April 2016. The panel on the right hand side 

shows the total ranking categorization based on the tail dependence coefficients shown in table 7-

19 and 7-20. 

15/2/2013 

1/4/2016 
Upper tail dependence coefficient 

  
Ranking results 

Copula SD CC CO HL Park RS GK   SD CC CO HL Park RS GK 

.BETI                               

Gumbel 0.12 0.35 0.35 0.55 0.55 0.56 0.58   1 5 5 9 9 11 13 

Clayton* 0.00 0.30 0.30 0.57 0.57 0.61 0.62   1 5 5 9 9 11 13 

.BUX                               

Gumbel 0.34 0.38 0.40 0.59 0.59 0.49 0.56   1 3 4 11 12 7 9 

Clayton* 0.34 0.43 0.48 0.67 0.67 0.62 0.66   1 3 4 11 12 8 10 

CRBX                               

Gumbel 0.33 0.30 0.29 0.55 0.55 0.46 0.56   4 3 1 8 9 6 12 

Clayton* 0.28 0.35 0.30 0.58 0.58 0.50 0.58   1 5 3 9 10 6 8 

.PX                               

Gumbel 0.34 0.36 0.35 0.61 0.61 0.47 0.60   2 5 3 13 13 6 9 

Clayton* 0.35 0.39 0.38 0.65 0.65 0.52 0.64   2 5 3 12 12 7 9 

.SOFIX                               

Gumbel 0.24 0.42 0.42 0.65 0.65 0.55 0.65   1 5 5 11 11 7 13 

Clayton* 0.20 0.44 0.44 0.68 0.68 0.61 0.69   1 5 5 11 11 7 13 

.WIG                               

Gumbel 0.41 0.35 0.40 0.63 0.63 0.57 0.66   5 2 3 11 12 9 13 

Clayton* 0.37 0.36 0.44 0.66 0.66 0.63 0.71   3 2 5 11 12 9 13 

∑ rank Gumbel             14 23 21 63 66 46 69 

∑ rank Clayton*             9 25 25 63 66 50 64 
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Table 7-20 shows in the left panel the tail dependence coefficients based on the Gumbel and 

rotated Clayton copula (Clayton*) function for the range-based volatility estimators that include 

overnight jumps during the period February 2013 – April 2016. The panel on the right hand side 

shows the total ranking categorization based on the tail dependence coefficients shown in table 7-

19 and 7-20 

15/2/2013 

1/4/2016 
Upper tail dependence coefficient 

 
Ranking results 

Copula COC 
HL  

Ext 

Park  

Ext 

RS  

Ext 

GK  

Ext 

Yang 

Zhang   
COC 

HL  

Ext 

Park  

Ext 

RS  

Ext 

GK  

Ext 

Yang 

Zhang 

.BETI                           

Gumbel 0.35 0.55 0.55 0.56 0.58 0.26   5 9 9 11 13 2 

Clayton* 0.30 0.57 0.57 0.61 0.62 0.19   5 9 9 11 13 2 

.BUX                           

Gumbel 0.47 0.62 0.58 0.48 0.54 0.35   5 13 10 6 8 2 

Clayton* 0.54 0.69 0.64 0.56 0.60 0.40   5 13 9 6 7 2 

CRBX                           

Gumbel 0.29 0.56 0.56 0.47 0.57 0.34   2 10 11 7 13 5 

Clayton* 0.31 0.58 0.59 0.51 0.59 0.29   4 11 13 7 12 2 

.PX                           

Gumbel 0.35 0.61 0.61 0.47 0.60 0.33   4 11 10 7 8 1 

Clayton* 0.38 0.65 0.65 0.52 0.64 0.33   4 13 10 6 8 1 

.SOFIX                           

Gumbel 0.42 0.65 0.65 0.55 0.65 0.29   5 11 11 7 13 2 

Clayton* 0.44 0.68 0.68 0.61 0.69 0.30   5 11 11 7 13 2 

.WIG                           

Gumbel 0.40 0.60 0.54 0.51 0.55 0.31   4 10 7 6 8 1 

Clayton* 0.43 0.64 0.57 0.55 0.59 0.24   4 10 7 6 8 1 

∑ rank Gumbel           25 64 58 44 63 13 

∑ rank Clayton*           27 67 59 45 59 10 

7.6 Summary and discussion of the efficiency gain results  

This chapter presents an overview of the main results of the ranking analysis, which was 

provided in sections 7-1 through 7-6. For each of the ranking methodologies a summary is 

presented based on the benchmark of choice (if relevant), the ranking methodology and on the 

scope of the empirical data. The summary table only presents the volatility estimators that were 

previously bolded. These figures indicate the least biased estimators or the estimators that 

performed the closest to the benchmark. Tables 7-21 to 7-23 provide a summary of the results 
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Table 7-21 summarizes the results of the ranking analysis for each of the ranking methodologies 

for .BETI and .BUX. 

    .BETI       .BUX     

Ranking methodology   
4/1/2010 4/1/2010 15/2/2013 

  
4/1/2010 4/1/2010 15/2/2013 

1/4/2016 15/2/2013 1/4/2016 1/4/2016 15/2/2013 1/4/2016 

Coefficient of efficiency                 

Benchmark: CC   GK GK GK   GK GK RS 

Benchmark: TTSE   GK GK GK   GK GK RS 

Mince-Zarnowitz regression analysis           

Horizon: 1day   Park GK Park   GK GK HL 

Horizon: 10 days   Park Park Park   HL* GK HL* 

Loss function approach                 

Loss function: MSE   Park Park GK   GK GK GK 

Loss function: QLike   Park Park Park   GK GK GK 

Pearson’s linear correlation function             

Correlation coefficient   GK GK HL/Park   GK GK HL/Park 

Tail Correlation function               

Copula function: 

Gumbel 
  HL/Park HL/Park GK   HL* HL HL* 

Copula function: 

Clayton 
  HL/Park HL/Park GK   HL* HL HL* 

 

Table 7-22 summarizes the results of the ranking analysis for each of the ranking methodologies 

for .CRBX and .PX. 

    .CRBX       .PX     

Ranking methodology   
4/1/2010 4/1/2010 15/2/2013 

  
4/1/2010 4/1/2010 15/2/2013 

1/4/2016 15/2/2013 1/4/2016 1/4/2016 15/2/2013 1/4/2016 

Coefficient of efficiency              

Benchmark: CC   GK GK GK   YZ YZ YZ 

Benchmark: TTSE   GK GK GK   YZ YZ YZ 

Mince-Zarnowitz regression analysis           

Horizon: 1day   HL HL GK*   GK* GK* Park* 

Horizon: 10 days   HL Park GK*   GK* Park* Park* 

Loss function approach                 

Loss function: MSE   Park Park GK   GK* GK* GK* 

Loss function: QLike   Park Park GK*   GK* Park* GK* 

Pearson’s linear correlation function            

Correlation coefficient   Park Park GK   GK* GK* Park* 

Tail Correlation function              
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Copula function: 

Gumbel 
  GK* GK* GK*   Park* Park* HL/Park 

Copula function: 

Clayton 
  GK* GK* Park*   Park* Park* HL* 

 

 

Table 7-23 summarizes the results of the ranking analysis for each of the ranking methodologies 

for .SOFIX and .WIG. 

    .SOFIX       .WIG     

Ranking methodology   
4/1/2010 4/1/2010 15/2/2013 

  
4/1/2010 4/1/2010 15/2/2013 

1/4/2016 15/2/2013 1/4/2016 1/4/2016 15/2/2013 1/4/2016 

Coefficient of efficiency               

Benchmark: CC   YZ YZ YZ   GK GK GK 

Benchmark: TTSE   YZ YZ YZ   GK GK GK 

Mince-Zarnowitz regression analysis           

Horizon: 1day   GK HL/Park GK   GK GK GK 

Horizon: 10 days   GK HL/Park GK   GK GK GK 

Loss function approach                 

Loss function: MSE   Park Park Park   GK GK GK 

Loss function: QLike   Park Park Park   GK GK GK 

Pearson’s linear correlation function             

Correlation coefficient   GK HL/Park HL/Park   GK GK GK 

Tail Correlation function              

Copula function: 

Gumbel 
  HL/Park GK GK   GK GK GK 

Copula function: 

Clayton 
  GK GK GK   GK GK GK 

 

The results show that in most cases there is no unanimous answer to the question which of the 

volatility estimators to use in which case. One exception is the .WIG index, where the Garman 

and Klass model outperforms all the other volatility estimators in all three time periods.   

 

An overall conclusion that can be drawn from the results is that the the performance of the 

Parkinson and the Garman and Klass model, either with or without the extension to include 

overnight returns, outperform all the other models in most of the indices and the defined time 

periods. 

 

This also provides answer to the first hypothesis, H.1, which states that Range-based volatility 

estimators are appropriate models to estimate the 'true' volatility of stock indices. Based on the 
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analysis in which a wide set of range-based volatility estimators and a wide set of stock market 

indices are compared with various and divergent ranking methodologies against the 'true' 

volatility we come to the conclusion that range-based volatlility estimators, i.e. the Parkinson 

and the Garman and Klass models (either with or without the extension to include overnight 

returns), proof to estimate the 'true' volatility resaonably well. The evidence of this statement 

lays with the performance of the various ranking methodologies. 

 

The coefficient of efficiency was performed with 2 different benchmark models. One 

benchmark model was based on the close-to-close estimator as was proposed in the literature, 

and another one was based on the TTSE model, which can be seen as an improvement to the 

previous literature that proposed or utilized the coefficient of efficiency to rank range-based 

volatility estimators. However, from the empirical analysis we find that the ranking results of 

the two efficiency coefficient methodologies are exactly the same and do not depend on the 

choice of the benchmark model. This conclusion also holds across different time periods where 

we notice that the coefficient of efficiency provides rather stable results. Based on the 

coefficient of efficiency we find that for .BETI, CRBX and .WIG the Garman and Klass model 

provides the best result across all three time periods. For .BUX we notice that during the second 

half of the period the Roger and Satchell model outperformed, while in all other cases Garman 

and Klass model outperformed. Only for .PX and .SOFIX the Yang and Zhang model 

outperformed for all three time periods.  

 

The Mincer-zarnowitz regression was performed with a 1 and 10 day horizon and shows 

various ranking results. The only estimators that have outperformed in the ranking analysis are 

the Garman and Klass, Parkinson and the High-Low estimators. Only .BUX and .PX include 

an extension for overnight returns, while in all other cases the overnight returns didn't add 

value. 

 

The Loss function approach was performed with two loss functions, the MSE and the MAE. 

Across all stock market indices and across all time periods only the Garman and Klass and the 

Parkinson estimators were outperforming in the ranking methodology. Including overnight 

returns was beneficial only in the case of .PX and for the second time period for .CRBX.  
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A similar conclusion can be drawn when basing the ranking methodology on the Pearson 

Correlation Coefficient. Only the Garman and Klass, the Parkinson and the High-Low 

estimators outperform. Including overnight returns was only beneficial for .PX. In all other 

cases the inclusion of overnight returns didn't proof to outperform the standard range-based 

volatility models, i.e. Garman and Klass and Parkinson. 

 

The Tail correlation methodology indicates the performance of the estimators in the tail of the 

distribution. This is the only ranking methodology that focuses on the performance in the 

extremes. The results of the Tail correlation ranking methodology show the importance of 

including overnight returns in the volatility estimation models, which can be traced back in the 

results of .BUX, .CRBX and .PX. The extended models that include overnight returns have no 

impact on .BETI and .SOFIX as for these indices there were no records of overnight jumps 

registered. These two indices are therefore out of scope for the auxilliary hypothesis, H1.2., 

which states that the efficiency of classical range-based volatility estimators can be increased 

by including overnight returns. We find evidence in all cases, excluding .BETI and .SOFIX, 

except for .WIG. Please note that .WIG is the only stock market index for which we can 

conclude that the Garman and Klass model outperforms in all of the applied ranking 

methodologies. Based on the results we can conclude that in most cases the overnight returns 

increase the efficiency based on the Tail Correlation ranking methodology.  

 

The second hypothesis, H.2., states that the dependence between the 'true' and the range-based 

volatility estimator is non-linear and shows dependence in the tails of the distirbutions. The 

positive tail correlations in tables 7-15 through 7-20 provide evidence in favor of this 

hypothesis. The tail correlation is indeed different from zero in almost all cases and the tail 

correlation of the best ranked range-based volatility estimators lays in the third quantile, 

between 0.5 and 0.75, in all the analysed cases.  
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8 APPLICATION I - VALUE-AT-RISK  

8.1 Introduction 

Value-at-Risk (VaR) is a risk metric that measures the future uncertainty of an investment by 

providing information on the downside risk in the form of an amount that could be lost with a 

chosen probability. An attractive feature of VaR is that it is applicable to all types of risk and, 

as a risk metric, it is easily comparable across different markets, exposures, but also across 

models. This is probably the reason why VaR has gained in popularity in the past years and 

has become a standard in both science as in the industry.  

 

A vast amount of VaR models can be found in the literature of which the parametric linear 

VaR model is one of the simplest and most popular one. Consequently the use, but also in 

certain amounts the abuse, of VaR models has received many criticism. The liquidity crisis of 

2007-2008 has confirmed that the critics weren’t unjustified and unfounded. Firstly, the normal 

distribution, which was heavily depending on the standard deviation, was often assumed in 

VaR models that couldn’t appropriately detect the risk in the tails of the distribution. Secondly, 

the risk beyond VaR is usually not captured with the VaR model itself. The tail beyond the 

VaR determines the risk of extreme losses. We suggest to investigate the impact of range based 

volatility models in the standard VaR model. The empirical analysis is performed on the same 

dataset as described in section 2. 

8.2 VaR model for range based volatility 

The VaR model that will utilize the information set included in OHLC data has the form 

jijiVaR ,
1

1,, ˆ)1(   
          8-1 

This model is without a drift adjustment, as we assume the present value of the expected return 

to be zero. The function )(1    denotes the inverse of the standard normal function with a 
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significance of 1- . The range based volatility models,
ji,̂ , that will be compared are 

presented in section 3.2.1. VaR is calculated for each volatility model i and each time step j. 

The empirical analysis of the index dataset is described in chapter 2. The volatility models are 

calibrated using 10 day history. The results of the VaR assessment are backtested with a set of 

Coverage tests. The unconditional Coverage (UC) test was introduced by Kupiec (1995) and 

is considered the first one, which will be complimented with the other two tests. Christoffersen 

(1998) included the test on the independence of exceedances (IND) to test whether 

exceedances come in clusters of a first order Markov chain, i.e. a test for consecutive 

exceedances. Christoffersen (1998) generalized the coverage tests and combined the UC and 

IND test into one Conditional Coverage (CC*) test. A coverage test is a test of the null 

hypothesis that the exceedances (
obs ) from a particular model are significantly different from 

the theoretical exceedances (
exp ).  
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 ,          8-2 

where  exp the expected proportion of exceedances is, 
1n

n
obs   is the observed 

proportion of exceedances, 1n  is the observed number of exceedances, 10 nnn  is the number 

of returns without exceedances and n is the sample size of the backtest. The asymptotic 

distribution of  UCLRln2  is chi-square with one degree of freedom. 

 
    10

11
00

01

0
1

11110101 11

1
nnnn

n

obs
n
obs

indLR








         8-3 

 
    10

11
00

01

0
1

11110101

expexp

11

1

nnnn

nn

CCLR








 ,        8-4 
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 . The asymptotic distribution of −2 ln(𝐿𝑅𝐶𝐶) is chi-

squared with 2 degrees of freedom. The linear relationship between these 3 tests is: 

 induccc LRLRLR ln2ln22  . 
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8.3 Empirical results of the VaR application 

The results of the VaR assessment for each of the volatility models are shown in Table 8-1 and 

Table 8-2. The results of the VaR models are divided in four sets. The first set includes the 

standard deviation, CC, CO and COC. The second set includes the range based volatility 

models that do not include overnight returns, i.e. HL, Park, RS and GK. The third set includes 

range based models that incorporate overnight returns, i.e. HL Ext, Park Ext, RS Ext, GK Ext 

and Yang Zhang. In the fourth set only the results of the TTSE as the unbiased estimator are 

included. The first three rows of each index show the results of the UC, IND and CC backtests, 

the fourth row shows the number of overruns and the last row shows the RMSE of the VaR 

models compared to the return. The RMSE indicates how close the VaR models follow the 

observed returns.  

 

The first set of VaR models are rejected by the unconditional and conditional coverage tests at 

both, the 5% and 1%, level for each of the indices. The independence test, however, is not quite 

rejected. The results of the IND test suggest that there is not enough evidence to detect 

dependency between the overruns at the 5% and 1% level for all the models and all the 

considered indices. The total number of overruns varies across the indices. For example, the 

standard deviation shows, with in total 12 overruns, the least number of overruns for the .WIG 

index. The .BUX and .CRBX indices show 15 overruns. The CC model shows the least number 

of overruns for the .WIG index (7) and the CO model shows the least number of overruns for 

.SOFIX index (8). 

 

In the second set of VaR model, the VaR calculated from Park, RS and GK are rejected by the 

UC and CC* tests at both, the 5% and 1%, level for each of the indices. Only the HL model 

from the second set cannot be rejected at neither the 5% nor the 1% level for almost all of the 

indices. Only for the .PX we observe that both the UC (0.1%) and the CC* (0.1%) tests are 

rejected at the 1% level. The HL model also shows the least number of overruns and the highest 

RMSE for all of the indices. This result suggests that the HL model does not follow the returns 

closely, yet it also ensures that the coverage tests do not reject the hypothesis. 

 

Also in case of the third set of VaR models that incorporate overnight returns we observe that 
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the UC and CC* tests are rejected at the 5% and 1% level. Only HL Ext cannot be rejected at 

these levels of the coverage tests for all of the indices. Also in this case there is one exception. 

For .PX we observe that both, the conditional and the unconditional, coverage tests are rejected 

at the 5% level, while they cannot be rejected at the 1% level. The UC and CC* tests denoted 

2.5% and 2.5% respectively. From the other extension models only the Park Ext is not rejected 

by the UC and CC* tests for the .WIG index at both confidence levels. The UC and CC* tests 

show 9.7% for both tests. Inclusion of overnight returns has resulted in equal or in a slight 

decrease of the total number of overruns across all indices. 
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Table 8-1 Results of unconditional, independence and conditional coverage backtest of the VaR calculations with the range based volatility 

models. 

Index Test SD CC CO COC HL Park RS GK HL* Park* RS* GK* 
Yang 

Zhang 
TTSE 

.BETI                

 LRuc 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 

 LRind 0.223 0.251 0.311 0.251 1.000 0.044 0.214 0.024 1.000 0.044 0.214 0.024 0.044 0.223 

 LRcc 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 

 Overruns 18.000 19.000 21.000 19.000 0.000 22.000 33.000 30.000 0.000 22.000 33.000 30.000 22.000 18.000 

 RMSE 0.030 0.031 0.030 0.031 0.045 0.027 0.025 0.025 0.045 0.028 0.026 0.026 0.027 0.029 

.BUX                

 LRuc 0.000 0.000 0.000 0.000 0.658 0.000 0.000 0.000 0.658 0.000 0.000 0.000 0.000 0.000 

 LRind 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 LRcc 0.000 0.000 0.000 0.000 0.658 0.000 0.000 0.000 0.658 0.000 0.000 0.000 0.000 0.000 

 Overruns 15.000 15.000 22.000 10.000 1.000 17.000 18.000 18.000 1.000 12.000 14.000 13.000 9.000 21.000 

 RMSE 0.039 0.039 0.035 0.039 0.055 0.033 0.032 0.032 0.058 0.037 0.037 0.037 0.037 0.030 

.CRBX                

 LRuc 0.000 0.000 0.000 0.000 0.289 0.000 0.000 0.000 0.289 0.000 0.000 0.000 0.000 0.000 

 LRind 1.000 1.000 1.000 1.000 1.000 1.000 0.195 1.000 1.000 1.000 0.195 1.000 1.000 0.107 

 LRcc 0.000 0.000 0.000 0.000 0.289 0.000 0.000 0.000 0.289 0.000 0.000 0.000 0.000 0.000 

 Overruns 15.000 15.000 15.000 15.000 3.000 11.000 17.000 15.000 3.000 11.000 17.000 14.000 13.000 13.000 

 RMSE 0.019 0.019 0.019 0.020 0.029 0.018 0.017 0.017 0.030 0.019 0.018 0.018 0.019 0.018 
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Table 8-2 Results of unconditional, independence and conditional coverage backtest of the VaR calculations with the range based volatility 

models. 

Index Test SD CC CO COC HL Park RS GK HL* Park* RS* GK* 
Yang 

Zhang 
TTSE 

.PX                

 LRuc 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.025 0.000 0.000 0.000 0.000 0.000 

 LRind 0.857 0.565 0.452 0.132 1.000 0.850 0.407 0.771 1.000 1.000 1.000 1.000 1.000 0.691 

 LRcc 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.025 0.000 0.000 0.000 0.000 0.000 

 Overruns 35.000 28.000 41.000 29.000 7.000 42.000 52.000 44.000 5.000 27.000 34.000 31.000 32.000 70.000 

 RMSE 0.024 0.024 0.021 0.024 0.032 0.019 0.018 0.018 0.034 0.022 0.021 0.021 0.022 0.017 

.SOFIX               

 LRuc 0.000 0.000 0.000 0.001 0.674 0.000 0.000 0.000 0.674 0.001 0.000 0.000 0.005 0.088 

 LRind 0.317 0.317 0.037 0.027 1.000 0.001 0.001 0.001 1.000 0.027 0.025 0.255 0.019 0.008 

 LRcc 0.000 0.000 0.000 0.000 0.674 0.000 0.000 0.000 0.674 0.000 0.000 0.000 0.000 0.002 

 Overruns 21.000 21.000 8.000 7.000 1.000 8.000 9.000 9.000 1.000 7.000 19.000 19.000 6.000 4.000 

 RMSE 0.024 0.025 0.024 0.025 0.038 0.023 0.023 0.023 0.039 0.024 0.024 0.024 0.025 0.027 

.WIG                

 LRuc 0.000 0.001 0.000 0.006 1.000 0.000 0.000 0.000 1.000 0.097 0.001 0.006 0.000 0.000 

 LRind 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 

 LRcc 0.000 0.001 0.000 0.006 1.000 0.000 0.000 0.000 1.000 0.097 0.001 0.006 0.000 0.000 

 Overruns 12.000 7.000 15.000 6.000 0.000 15.000 18.000 16.000 0.000 4.000 7.000 6.000 12.000 11.000 

 RMSE 0.034 0.034 0.030 0.035 0.047 0.028 0.028 0.028 0.051 0.034 0.033 0.033 0.033 0.029 
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Interestingly, the VaR calculated from the unbiased volatility estimator, the TTSE, is rejected 

by the UC and CC* tests at both, the 5% and 1%, level for almost of the indices. Only for 

.SOFIX we cannot reject the UC test (8.8%) at the 5% level. For most of the indices there is 

not sufficient evidence to reject the IND test at the 5% or 1% level. For .WIG the independence 

test is rejected at both levels, while the independence and conditional coverage tests are 

rejected for the .SOFIX index at the 5%, but not quite at the 1% level. The RMSE denotes that 

for most of the indices the VaR based on the TTSE model follows the observed returns closely.  

 

The obtained results show that the VaR models based on the HL or HL Ext cannot be rejected 

in almost all of the presented cases. In fact the VaR model based on HL is only rejected in case 

of the .PX index, while for the rest of the indices the results between the HL and HL Ext model 

are almost the identical. Both VaR models also resulted in the least number of overruns 

throughout the empirical analysis. Unsurprisingly the HL Ext model also has the highest RMSE 

across all of the indices. The RMSE on the other hand measures the overall distance between 

the VaR estimates and the observed returns. VaR models that cannot be rejected at the 5% nor 

at the 1% confidence level and are at the same time ‘far away’ (indicated with a relative high 

RMSE) from the observed returns, can be considered overestimated. A good VaR model must 

first of all serve its purpose. If its purpose is never to be overrun then the RMSE is of less 

importance. However, if its purpose is to minimize the possibility of an overrun and at the 

same time not to be too far away from the observed returns, the RMSE becomes an important 

measure to consider.  
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Figure 8-1 shows the history of different VaR models against the observed returns. 

 

It has been noted in the Roger and Satchell and the Garman and Klass range-based volatility 

models have an overall low RMSE (.BETI and .WIG), GK (.CRBX and .SOFIX) and TTSE 

(.BUX and .PX) VaR models. The RMSE of the HL and HL Ext, on the other hand, is much 

higher indicating that the HL VaR models are not following the realized returns close enough. 
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Figure 8-1 VaR models with the lowest (red) and highest (purple) RMSE versus the index returns. 
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9 APPLICATION II - PORTFOLIO 

OPTIMIZATION 

Part of this chapter has been published in the International Journal of Mathematical and 

Computational Sciences, Poklepović, Aljinović, Matkovic (2015) 

 

The second application concerns a portfolio optimization exercise based on individual stock 

prices of the .CRBX index. The Parkinson range-based volatility model is utilized to build an 

optimal portfolio consisting of a limited number of stock from the .CRBX index. 

9.1 Portfolio optimization and Markowitz modern portfolio theory 

Modern Portfolio Theory was introduced by Nobel Laureate Harry Markowitz (1952) in his 

seminal paper which changed the way portfolios were managed until then. This theory focuses 

on portfolio diversification and risk control. Investors form portfolios according to the mean 

variance efficiency criteria. This means that investors maximize their return across all possible 

portfolios and accept the risk according to their risk aversion. Markowitz describes a risk 

averse investor as a subject who prefers a higher return versus a lower return and who at the 

same time is prepared to accept more risk if such investment increases the expected return. 

Such an investor optimizes the expected portfolio return given the portfolio risk. Modern 

portfolio theory is based on the efficient frontier (EF) of investments, i.e. the spine of portfolios 

with maximum expected return across all possible portfolios given a certain amount of 

portfolio risk. The portfolio risk is of crucial information to the investor and therefore needs to 

be quantified. The volatility of the portfolio return is often considered as the risk of concern. 

Since volatility is not observable it needs to be estimated. Markowitz proposed to quantify 

portfolio risk by means of the volatility of financial assets. He used the standard deviation of 

financial assets as a simple measure of risk and the lower semi-variance as the more complex 
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estimator. The lower semi-variance is according to Markowitz the only volatility estimator in 

which a rational investor might be interested in. On the other side the standard deviation has 

become one of the most popular risk estimators in practice due to the simplicity in using and 

understanding this measure in portfolio management. However, both estimators use only one 

single daily observable price change to determine the volatility of financial returns. An 

alternative volatility estimator used in this paper is based on high frequency data. Volatility 

estimated by means of high frequency data is also called realized volatility and can be 

considered unbiased. In practice, however, the implementation of high frequency data is 

limited by several reasons. First of all, high frequency data is not available for all securities. 

This is especially true for securities traded in emerging markets where the trading volume is 

often insufficient as the data frequency becomes smaller. Secondly, as the frequency becomes 

smaller microstructure effects emerge which induce an upward bias in the estimated volatility. 

Thirdly, there is a serious calculation complexity due to the extensive amount of data that is 

required for estimating the daily volatility or the variance-covariance matrix. For example to 

calculate the volatility of 250 trading days based on 5-minute interval observations around 

24.000 intraday price observations are required. Moreover for estimating the EF of a portfolio 

consisting of 20 assets more than a million observations will be required. A more practical 

methodology to estimate the intraday volatility is by means of open, high, low and closing 

prices (OHLC). This paper uses the Parkinson (1980) range-based volatility estimator for 

extreme price jumps, which are characteristic for emerging markets like Croatia. A significant 

shortcoming however, of the range-based volatility estimator is that no multivariate analogue 

of the intraday range exists, which means that the estimation of the variance-covariance matrix 

is not straightforward. A simple estimator of the conditional variance-covariance matrix of 

returns that was proposed by Harris and Yilmaz (2007). This methodology is used to construct 

the EF based on the range-based volatility estimator. This paper compares EF based on 3 

different volatility estimators using a portfolio of stocks from the Croatian Stock Market.  

 

The outline of the remainder of the paper is as follows. Section 2 reviews the literature on 

modern portfolio theory with focus on the literature on different approaches to estimating the 

volatility. Section 3 describes the modern portfolio theory, which is the basis of this research. 

Section 4 presents the lower semi-variance approach in estimating the efficient frontier and 
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section 5 the intraday volatility approach. The stock price data is described in section 6. The 

results of the empirical research are presented in section 7. Section 8 concludes. 

 

In his seminal paper, Markowitz (1952) describes Modern Portfolio Theory in a quantitative 

model that solves the complex problem of capital allocation across assets in such a way that it 

minimizes the variance of the portfolio given an expected return. Markowitz proposed a simple 

square root optimisation that results in the mean-variance efficient portfolio and suggested to 

use the standard deviation for estimating the portfolio volatility. The standard deviation is a 

statistically correct estimator of the volatility of returns if the observed time series are derived 

from a normal distribution. This, however, is not always the case. One of the stylized facts of 

financial returns as described in Cont (2001) is the non-normality of financial returns. The 

distribution often ‘suffers’ from positive skewness and leptokurtosis. Other stylized facts 

include amongst others heteroscedasticity and time varying correlations of financial returns. 

Therefore the standard deviation, which assumes normality by default, is expected to 

underestimate the true volatility of the distribution. Motivated by the definition of risk, as a 

financial loss or downside risk, Markowitz (1952) proposes a new definition of risk considering 

only the negative results.  

 

The lower semi-variance measures the dispersion of the returns below a given target return. 

Markowitz explains that the usage of the lower semi-variance is justified by two reasons. 

Firstly, rational investors are only interested in limiting the volatility that can cause a negative 

result. Secondly, if the financial time series are not normally distributed then the standard 

deviation will underestimate the true risk of the portfolio. In these cases the lower semi-

variance, as a measure of downside risk, should be used instead. It is shown in James (1970) 

that there is a great support in the market for using the lower semi-variance as a risk measure. 

Investors are more sensitive to losses below a certain threshold then to gains beyond a certain 

threshold. In¸ Bawa and Vijay (1975) the formula for lower semi-variance is generalized and 

defined as the lower partial moment (LPM). Four different LPM volatility estimators are 

compared in Konno, Waki and Yuuki (2002) and it is shown that the LPM proposed by 

Markowitz is suitable for controlling risk when the distribution of the assets is not normal.  

 

Both estimators that were proposed by Markowitz use only one single daily price observation 



 

         95 

to determine the variance-covariance matrix. This means that all other price observations that 

are available when high frequency data a used are ignored. 

 

One of the recent theories focusing on volatility estimators are described in the literature of 

high frequency data. The realized volatility estimator is proposed in Dacarogna, Muller, Olsen 

and Pictet (1998), which is the squared sum of intraday returns. According to Andersen, 

Bollerslev, Diebold and Labys (2001) this volatility estimator is theoretically unbiased when 

the frequency sample goes to zero, but will in turn induce microstructure effects. The realized 

volatility is estimated by using all market available intraday information. Another practical 

disadvantage of this method is that it requires an extensive amount of intraday price 

observations for estimating an EF. A reasonable alternative to using high frequency data is to 

use volatility estimators that require only 4 standard available intraday price observations, i.e. 

the OHLC estimators. OHLC estimators, generally, assume that asset prices follow a 

Geometric Brownian Motion (GBM) i.e. the price of the asset on day t is independent of the 

price of the same asset on day t-1 and that the price of the assets are stochastic through time. 

GBM without drift is assumed in Parkinson (1980) and it proposes a range based volatility 

estimator. This estimator uses the maximum difference between the maximum and the 

minimum intraday price for estimating the volatility. The open and closing prices are included 

in Garman and Klass (1980) and they propose an estimator, which uses all four OHLC intraday 

price observations. An estimator that follows a GBM with drift is proposed in Rogers and 

Satchel (1991). This estimator is useful when the drift is non zero. Significant differences 

between OHLC estimators that are popular in the literature are found in Duque and Paxson 

(1997) and they conclude that the choice of the OHLC volatility estimator is important. OHLC 

volatility estimators that are popular in the literature are compared in Arnerić, Matković and 

Čorić (2018), against the unbiased high frequency based volatility estimator. They show that 

the Parkinson range-based volatility estimator is the least biased estimator for estimating the 

volatility of the Croatian Stock market compared to other OHLC volatility estimators. The 

comparison is performed against the high frequency based realized volatility which is the 

theoretically unbiased volatility estimator. The data used in their research spans a period of 5 

years and includes the recent credit and bank crisis of 2007 and 2008. They confirm the 

findings of Duque and Paxson (1997) by means of loss functions and time varying conditional 
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correlations and conclude that the OHLC volatility estimators are significantly different from 

each other. This paper follows the results of Arnerić, Matković and Čorić (2018) and uses the 

Parkinson range-based volatility estimator in estimating the intraday volatility. The conditional 

variance-covariance matrix proposed in Harris and Yilmaz (2007) is used to construct the EF 

by means of mean-variance.  

 

EF are compared in Foo and Eng (2009), Sing and Ong (2000) and Sivitanides (1998) based 

on the standard deviation and the lower semi-variance and conclude that it is possible to 

construct an EF based on the lower semi-variance that lies on the left side of the EF based on 

the simple standard deviation. They conclude that this EF is stochastically dominant compared 

to the standard deviation proposed by Markowitz. It is possible to reduce the risk of a portfolio 

by using the lower semi-variance as a measure of the portfolio volatility (Foo and Eng (2009)). 

According to Cheng and Woverton (2001) it is not possible to compare EF based on different 

volatility estimators since the risk estimators are not identical, i.e. the x-axis on the mean-

variance coordinate system is different. They conclude that the only meaningful way of 

comparing EF is by ex-post analysis and that the location of the EF on the mean-variance 

coordinate system does not add valuable information. 

  

This research compares EF based on different volatility estimators: standard deviation, lower 

semi-variance and the intraday volatility estimator. The questions of interest are whether the 

volatility estimator influences the location of the efficient frontier on the mean-variance 

coordinate system and whether the location of the efficient frontier on the mean-variance 

coordinate system determines the performance of the efficient portfolios by the ex-post 

analysis. 

 

According to Modern Portfolio Theory (MPT) investors use mean-variance optimization to 

construct an efficient portfolio. MPT relies on the following assumptions: the investment 

horizon is one period (one month, one year, etc.); investors optimize their expected return 

across all possible portfolios; the expected portfolio return depends on the expected return and 

the risk of the investment; investors are rational and prefer a higher return compared to a lower 

return, and also have aversion to risk; there is no tax, no inflation and there is no transaction or 

other costs involved; all investors have free and unlimited access to relevant information at the 
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same time; all stocks are infinitely divisible. This set of assumptions creates a theoretical world 

in which investors operate according to MPT. This world is different from the real world, but 

incorporates almost all elements average investors take into account when making investment 

decisions. According to MPT investors will spread their portfolio to divers or control the risk 

and at the same time they want to maximize their expected return. Optimization is based on 

mean-variance efficiency, which means that, given a predetermined portfolio risk, investors 

will choose the portfolio that maximizes their return. The standard deviation is a popular 

volatility estimator that requires only one price observation per day. This estimator is 

symmetrical and assumes that the returns follow a normal or multivariate normal distribution. 

Considering that every efficient portfolio has the highest revenue along with defined rate of 

risk c, mathematically we may define efficient portfolio as follows (Aljinović, Marasović and 

Šego (2011)): 
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𝐸(𝑅) denotes the vector column of expected returns, 𝐸(𝑅𝑖) the expected return of the stock i, 

𝜋 the vector column of weights of a stock in a portfolio, 𝜋𝑖 the weight of a stock i in portfolio 

𝜋, 𝑆 is the variance-covariance matrix, 𝜎𝑖,𝑗 the covariance of returns of stocks i and j, 𝐸(𝑅𝜋) 

expected portfolio return, 𝜎𝜋 standard deviation of the portfolio and n the number of stocks.  



 

98 

 

9.2 Range based volatility approach 

The standard deviation and the lower semi-variance use one single daily price observation in 

determining the volatility of the portfolio. All other relevant information available to the 

investor is ignored. Intraday volatility estimators use more daily price observations in 

computing the volatility. These estimators do not rely on the normal distribution. It is shown 

in Dacarogna, Muller, Olsen and Pictet (1998) that the unbiased volatility estimator could be 

constructed by means of high frequency data. The trading volume in emerging markets is often 

insufficient to ensure high frequency data for all required stocks. Due to limitations, we follow 

the work of Arnerić, Matković and Šorič (2018) who showed that the Parkinson range-based 

volatility estimator is the least biased OHLC estimator when estimating the volatility of the 

Croatian Stock Market based on the Loss Function approach as showed in section 7.3. The 

Parkinson range based volatility estimator uses two intraday price observations to determine 

the spread: the highest and the lowest intraday observations.  

The range-based volatility estimator is given by:  

2

,

1
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4ln 2
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                      9-5 

In equation (8) H denotes the highest and L denotes the lowest observed intraday price. Using 

the highest and the lowest price observations Parkinson proposes a volatility estimator for high 

volatile markets. This estimator follows a GBM without drift and uses only extreme price 

movements to calculate the volatility. The portfolio risk as defined in equation (5) requires the 

variance-covariance matrix for input. The off-diagonal elements of the variance-covariance 

matrix of the range-based volatility estimator are not directly observable. A simple model that 

is based on the exponentially weighted moving average (EWMA) to estimate the off-diagonal 

elements of the variance-covariance matrix when using the range-based volatility estimator is 

proposed in Harris and Yilmaz (2007). This model combines the range-based and the return-

based approaches. The return-based volatility estimator is given by: 

σii,t
R = √ln (

pi,t

pi,t−1
)
2

            

where ,i tp
 is the price of stock i on day t.  
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The estimator is based on the multivariate EWMA model of the conditional variance-

covariance matrix given by 

 , , 1 , 1
ˆ ˆ 1 ; , 1,...,R R R

ij t ij t ij t i j n       
        9-6 

where λ is the single decay factor, which is typically set to 0.94, estimated by JP Morgan as 

the average value of decay factor that minimizes the mean square error of daily out-of-sample 

conditional volatility forecasts for a wide range of assets.  

 

The diagonal and off-diagonal elements of the range-based estimator of the conditional 

variance-covariance matrix are given by 
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Finally, the elements of the variance-covariance matrix of the range-based volatility model are 

calculated by    

, ,
ˆ ˆRange Range R

ij ii t jj t ij   
                     9-9 

Now, when the range-based variance-covariance matrix is known, we proceed with steps (1) 

to (5) to calculate the mean variance portfolio. 

9.3 Data description 

The portfolios constructed in this research consist of an investment in 10 stocks from the 

CRBX index. The data spans from 12th March 2013 to 13th December 2013 and counts 191 

price observations. The following stocks are included: AD Plastik d.d. (ADPL), Atlantska 

Plovidba d.d. (ATPL), Belje d.d. (BLJE), Djuro Djaković Holding d.d. (DDJH), Dalekovod 

d.d. (DLKV), Valamar Adria Holding d.d. (DOMF), Ericsson Nikola Tesla d.d. (ERNT), 

Hrvatski Telekom d.d. (HT), Ingra d.d. (INGR) and Vupik d.d. (VPIK). 
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Table 9-1 shows the descriptive statistics including the sample size, minimum, maximum, 

expected returns, the volatility at the end of the investment period for each volatility estimator, 

skewness, kurtosis and the Jarque-Bera test for normality of returns. The descriptive statistics 

shows that all assets show asymmetric behaviour and leptokurtosis, i.e. deviation from the 

normal distribution. The Jarque-Bera test shows that none of the stocks follows a normal 

distribution. 

Table 9-1 shows the descriptive statistics for a selection of stocks 

  ADPL ATPL BLJE DDJH DLKV 

N 190 190 190 190 190 

Min -0.02840 -0.06480 -0.05200 -0.05730 -0.30800 

Max 0.04120 0.07310 0.10100 0.08250 0.26000 

Expected return 0.00000 0.00133 -0.00203 -0.00145 -0.00233 

Variance 0.00007 0.00077 0.00037 0.00053 0.00328 

Standard deviation 0.00864 0.02770 0.01920 0.02290 0.05730 

Lower semi-variance 0.00004 0.00033 0.00016 0.00022 0.00162 

Lower semi-SD 0.00604 0.01810 0.01250 0.01480 0.04030 

Range-based volatility 0.00477 0.02110 0.02040 0.02720 0.05490 

Skewness 0.24 0.49 1.04 0.69 -0.18 

Kurtosis 3.66 0.16 5.04 1.37 7.20 

Jarque-Bera 5.18 71.51 66.93 36.02 140.47 

      

  DOMF ERNT HT INGR VPIK 

N 190 190 190 190 190 

Min -0.03410 -0.12800 -0.11300 -0.07500 -0.07350 

Max 0.02890 0.04220 0.03290 0.14400 0.07240 

Expected return -0.00031 -0.00025 -0.00111 -0.00154 -0.00152 

Variance 0.00013 0.00021 0.00014 0.00094 0.00040 

Standard deviation 0.01140 0.01450 0.01180 0.03070 0.02000 

Lower semi-variance 0.00007 0.00014 0.00010 0.00036 0.00019 

Lower semi-SD 0.00823 0.01180 0.00998 0.01910 0.01390 

Range-based volatility 0.00947 0.00675 0.00619 0.03020 0.01740 

Skewness -0.19 -3.44 -4.51 1.21 0.10 

Kurtosis 0.39 31.17 43.18 4.37 1.65 

Jarque-Bera 55.01 6,659.13 13,422.71 61.05 14.83 
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Figure 9-1 Estimated volatility over time using different volatility estimators. 

Figure 9-1 shows values of the three observed volatility estimators for each stock. It can be 

concluded that, on average, the highest volatility is estimated by standard deviation and the 

intraday range-based volatility estimator and that the lowest volatility is estimated by the semi-

standard deviation. 

9.4 Empirical results of the Portfolio Optimization application 

The locations of the EF on the mean-variance coordinate system and the performance of the 

three different volatility estimators in the ex-post, or out-of-sample analysis, are compared.  

 

In the first part of the analysis, the EF is computed at 20 different risk levels for the portfolios 

using mean-variance, lower semi-variance and intraday range-based volatility approach. The 

appropriate weights, returns and standard deviations are presented in Tables II, III and IV. 
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Table 9-2 Efficient Portfolios Using Mean-Variance Model 

ADPL ATPL BLJE DDJH DLKV DOMF ERNT HT INGR VPIK SD (%) 

Return 

(%) 

0.345 0.059 0.035 0.040 0.002 0.187 0.121 0.177 0.000 0.035 0.568 -0.039 

0.582 0.168 0.000 0.000 0.000 0.136 0.114 0.000 0.000 0.000 0.700 0.015 

0.634 0.228 0.000 0.000 0.000 0.052 0.086 0.000 0.000 0.000 0.800 0.027 

0.662 0.277 0.000 0.000 0.000 0.000 0.061 0.000 0.000 0.000 0.900 0.035 

0.655 0.326 0.000 0.000 0.000 0.000 0.020 0.000 0.000 0.000 1.000 0.043 

0.628 0.372 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.100 0.050 

0.582 0.418 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.200 0.056 

0.539 0.461 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.300 0.061 

0.498 0.502 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.400 0.067 

0.458 0.542 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.500 0.072 

0.420 0.580 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.600 0.077 

0.382 0.618 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.700 0.082 

0.345 0.656 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.800 0.087 

0.308 0.692 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.900 0.092 

0.271 0.729 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.000 0.097 

0.235 0.765 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.100 0.102 

0.200 0.801 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.200 0.107 

0.164 0.836 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.300 0.111 

0.094 0.907 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.500 0.121 

0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.768 0.133 

 

The results of the three different volatility estimators show very similar range for the return of 

portfolios. However, the highest risk is found with mean-variance model. It ranges from 0.57%, 

when diversifying portfolio and investing in all but one stock (INGR is not included in 

portfolio) yielding a return of -0.04%, to 2.77% when investing in only one share (ATPL), 

yielding a return of 0.13%. When considering lower semi-variance, the risk ranges from 0.45%, 

when diversifying portfolio and investing in ADPL, ATPL, DDJH, DOMF, ERNT and HT 

yielding 0.00% return, to 1.81% when investing in only one stock (ADPL) yielding return of 

0.13%.  
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Table 9-3 Efficient Portfolios Using Lower Semi-Variance Model. 

ADPL ATPL BLJE DDJH DLKV DOMF ERNT HT INGR VPIK 

SD 

(%) 

Return 

(%) 

0.527 0.122 0.000 0.003 0.000 0.201 0.080 0.068 0.000 0.000 0.450 0.000 

0.527 0.122 0.000 0.003 0.000 0.201 0.080 0.067 0.000 0.000 0.450 0.000 

0.531 0.124 0.000 0.001 0.000 0.201 0.080 0.064 0.000 0.000 0.452 0.001 

0.571 0.148 0.000 0.000 0.000 0.190 0.072 0.018 0.000 0.000 0.472 0.010 

0.602 0.195 0.000 0.000 0.000 0.142 0.061 0.000 0.000 0.000 0.507 0.020 

0.627 0.251 0.000 0.000 0.000 0.072 0.050 0.000 0.000 0.000 0.564 0.030 

0.654 0.307 0.000 0.000 0.000 0.000 0.039 0.000 0.000 0.000 0.637 0.040 

0.636 0.342 0.000 0.000 0.000 0.000 0.022 0.000 0.000 0.000 0.681 0.045 

0.618 0.376 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.728 0.050 

0.550 0.450 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.835 0.060 

0.475 0.525 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.953 0.070 

0.400 0.600 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.079 0.080 

0.325 0.675 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.210 0.090 

0.287 0.713 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.276 0.095 

0.250 0.750 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.344 0.100 

0.175 0.825 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.482 0.110 

0.100 0.900 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.621 0.120 

0.025 0.975 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.763 0.130 

0.002 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.806 0.133 

0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.809 0.133 

 

Table 9-4 Efficient Portfolios Using Intraday Volatility Model. 

ADPL ATPL BLJE DDJH DLKV DOMF ERNT HT INGR VPIK 

SD 

(%) 

Return 

(%) 

0.177 0.062 0.044 0.038 0.024 0.196 0.155 0.200 0.041 0.063 0.309 -0.060 

0.199 0.073 0.030 0.022 0.017 0.198 0.172 0.201 0.036 0.052 0.310 -0.050 

0.221 0.084 0.016 0.006 0.010 0.200 0.190 0.203 0.030 0.041 0.315 -0.040 

0.245 0.094 0.002 0.000 0.003 0.202 0.208 0.199 0.022 0.026 0.324 -0.029 

0.274 0.108 0.000 0.000 0.000 0.203 0.223 0.181 0.010 0.001 0.338 -0.019 

0.300 0.134 0.000 0.000 0.000 0.196 0.235 0.134 0.001 0.000 0.361 -0.009 

0.324 0.164 0.000 0.000 0.000 0.188 0.245 0.079 0.000 0.000 0.394 0.001 

0.347 0.194 0.000 0.000 0.000 0.181 0.255 0.023 0.000 0.000 0.436 0.011 

0.343 0.246 0.000 0.000 0.000 0.165 0.247 0.000 0.000 0.000 0.485 0.021 

0.319 0.313 0.000 0.000 0.000 0.143 0.226 0.000 0.000 0.000 0.548 0.032 

0.294 0.380 0.000 0.000 0.000 0.121 0.205 0.000 0.000 0.000 0.622 0.042 

0.270 0.447 0.000 0.000 0.000 0.099 0.184 0.000 0.000 0.000 0.703 0.052 

0.246 0.514 0.000 0.000 0.000 0.077 0.162 0.000 0.000 0.000 0.789 0.062 

0.222 0.582 0.000 0.000 0.000 0.055 0.141 0.000 0.000 0.000 0.878 0.072 

0.198 0.649 0.000 0.000 0.000 0.033 0.120 0.000 0.000 0.000 0.970 0.082 

0.174 0.716 0.000 0.000 0.000 0.011 0.099 0.000 0.000 0.000 1.063 0.093 

0.144 0.785 0.000 0.000 0.000 0.000 0.072 0.000 0.000 0.000 1.159 0.103 

0.107 0.855 0.000 0.000 0.000 0.000 0.038 0.000 0.000 0.000 1.255 0.113 

0.071 0.925 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 1.354 0.123 

0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.453 0.133 
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The lowest risk is measured with intraday range-based estimator ranging from 0.31%, when 

diversifying risk and investing in all the stocks with different weights yielding the negative 

return of -0.06%, to 1.45% when investing in ATPL yielding the return of 0.13%. It can be 

concluded that perhaps intraday range-based volatility estimator underestimates the risk 

compared to the two other volatility estimators. However, the results of the ex-post analysis 

test the performances of the models. 

 

The computed efficient frontiers are plotted on the mean-variance coordinate system for the 

mean-variance model, lower semi-variance and intraday range-based volatility model and are 

presented in Figure 9-2, Figure 9-3 and Figure 9-4.   

 
Figure 9-2 the efficient frontier based on the mean-variance model. 

 
Figure 9-3 shows the efficient frontier based on the lower semi-variance model. 



 

         105 

 
Figure 9-4 shows the efficient frontier based on the intraday estimator model. 

In the second step, an ex-post analysis is performed by investing in a portfolio of stocks using 

the calculated portfolio weights. The stock returns on the next trading day and the calculated 

weights are used to calculate for each model the portfolio returns. The results are presented in 

Table 9-5. 

Table 9-5 Expected portfolio return in percentages for the three different volatility estimators. 

 

 

 

 

 

  

mean-

variance 

Lower  

semi-variance 

Range-based 

volatility model 

1 0.5039 0.3518 0.8597 

2 0.0791 0.3513 0.7389 

3 -0.2381 0.3466 0.6181 

4 -0.4154 0.3030 0.5066 

5 -0.3587 0.1332 0.4460 

6 -0.3007 -0.1211 0.3999 

7 -0.2405 -0.3796 0.3759 

8 -0.1840 -0.3372 0.3537 

9 -0.1301 -0.2947 0.3349 

10 -0.0779 -0.1983 0.3185 

11 -0.0270 -0.0996 0.3021 

12 0.0228 -0.0009 0.2857 

13 0.0718 0.0978 0.2693 

14 0.1202 0.1471 0.2529 

15 0.1681 0.1965 0.2365 

16 0.2155 0.2952 0.2201 

17 0.2625 0.3939 0.2536 

18 0.3092 0.4926 0.3400 

19 0.4019 0.5222 0.4264 

20 0.5249 0.5242 0.5249 
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Assuming that an equal amount of money is invested by 20 investors with different risk 

aversions that result in the 20 portfolios as presented in tables 9-2, 9-3 and 9-4 given the defined 

risk measures, the highest return would be obtained if the intraday volatility estimator approach 

was used. This would investment strategy would yield in a positive return for all risk aversions, 

while for portfolios 1 to 15 it would yield in the highest portfolio return amongst all risk 

measures ranging from 0.88% when diversifying risk to 0.52% when investing in only one 

stock, i.e. ADPL. When the investment is based on the mean-variance or lower semi-variance 

approach, it yields both positive and negative returns, depending on the risk aversion. 

Moreover, it yields lower positive returns for more diversified portfolios than the intraday 

volatility approach. Notice that the last portfolio considers a 100% investment in a single stock, 

i.e. ADPL, and thereby denotes the portfolio with the highest risk. This portfolio will earn the 

same amount regardless of the chosen volatility estimators. 

  

Given the mean-variance coordinates of the EF and the performance of the 1-day ex-post 

analysis we conclude that the range-based volatility model outperforms both the mean-variance 

and the lower semi-variance models when constructing EF. 

 

According to Markowitz, rational investors are only interested in the lower semi-variance 

because this estimator measures the risk of losses below a certain threshold, i.e. losses of 

interest to the investor. Rational investors are concerned about losses, because they want to 

control their portfolio risk at every point in time. When financial returns do not follow a normal 

distribution the standard deviation can be replaced by the lower semi-variance. Since both 

estimators use a single daily price observation in estimating the volatility, intraday volatility 

estimators can be considered as an alternative. According to Dacarogna intraday volatility 

estimators are assumed to be unbiased. However, high frequency data induce microstructure 

effects and also some practical limitation since they do not exist for all assets. The range based 

intraday volatility estimator has gained interest in recent literature. It is a more efficient 

estimator than the daily squared close-to-close return and it is relatively robust to 

microstructure effects. However, since there is no multivariate analogue of the range-based 

volatility estimator the conditional variance-covariance matrix is estimated by a EWMA-based 

model, which forms the basis for the mean-variance portfolio estimation. The EF are 
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constructed based on all three volatility estimators. Their performances are compared in the 

next out-of-sample trading day. 

 

The EF based on these three types of volatility measures show different levels of expected 

returns, portfolio risk and portfolio diversification. Thus, the EF differs in location on the 

mean-variance coordinates. The results of the three different volatility estimators show very 

similar range for the return of portfolios. However, the highest risk is found with mean-

variance model and the lowest risk is measured with intraday estimator.  

 

The efficient portfolios based on the intraday range-based volatility estimator outperforms the 

alternative volatility estimators for most risk levels when considering the investment in these 

portfolios and the returns on the next trading day. 

 

The results of the portfolio estimation show that the choice of the risk estimator is important 

in constructing the EF since the portfolio weights differ and thus the choice of the investment. 

 

For further research, we suggest to extend this theoretical research by including a longer period 

and to include more volatile periods like the recent credit crisis of 2007 and 2008. Intraday 

volatility has the interesting property of using multiple intraday observations to determine the 

daily volatility. According to Markowitz rational investors are only interested in the risk of a 

negative return. Therefore it would be interesting to investigate the performance of a semi-

variance version of the range-based volatility model on a set of financial assets.   
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10 CONCLUSION 

The scientific focus in improving models for estimating the volatility of financial markets has 

been increasing over the past decades and has resulted in an expansion and further enrichment 

of the already broad literature in this field. To a large extend this increased scientific interest 

can be prescribed to the increasing availability of high frequency price observations in the past 

few decades. This has shed some new light to already existing theory of Realized Volatility, 

which has engraved a new direction in estimating the volatility of financial markets. This 

theory has opened the windows for a vast increase in scientific research papers, which have 

focused on estimating the Integrated Volatility. Some of these research papers propose more 

efficient and unbiased Integrated Volatility estimators. More or less all of the research papers 

that used empirical data focused the research on the main global markets. For as far as the 

Author is aware the focus on European Emerging Stock Markets in the context of estimating 

daily Realized Volatility has been relatively poor in providing a broad overview across several 

East European Stock markets.  

This dissertation distinguishes itself from the existing literature by making a contribution to 

already existing volatility models. The Realized Volatility as well as the unbiased estimator of 

the Integrated Volatility, the Two Times Scale Estimator, are calculated for a vast number of 

European emerging stock markets. The investigation of this Thesis also considers a wide range 

of parsimonious range-based volatility models that utilize only a limited number of intraday 

price observations. Some of these models have been extended for overnight returns, since the 

overnight price changes (also referred to as overnight jumps) may have a significant impact on 

the preciseness of the estimator. The empirical research is based on 6 East European Stock 

Markets (.BETI, .BUX, .CRBX, .PX, .SOFIX and .WIG) and provides a more complete 

overview of the performance of various volatility models on these different markets.  

 

This research has investigated a vast number of range-based volatility models that are known 
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in the literature. Most of the models have been extended to include overnight jumps, which 

have also been proven to include valuable information on the change of price. Furthermore this 

research focusses on a short estimation horizon of only one single day. The price information 

available on day t is used for estimating the true volatility on day t. It is, however, trivial to 

estimate the volatility for a larger number of historical price observations or for a larger number 

of days. Each of the range-based volatility models can easily be extended to multiple days if 

required. A single day has been chosen to compare the efficiency of the range-based volatility 

estimators with the unbiased volatility estimator, i.e. the TTSE, which is also based on a single 

day. Hence, the price information available on day t is used to estimate the volatility of day t. 

The estimated daily volatility is benchmarked against the TTSE volatility model, which is a 

robust and unbiased estimator of the Integrated Volatility. A substantial price history of 6 East 

European stock market indices has been used for the empirical analysis.  

 

In the first part of this research, sections 3 and 4, the theory of volatility analysis was discussed 

together with the challenges in estimating Realized Volatility. Various stylized facts have been 

addressed and mirrored against the stock market indices to analyse the impact on the empirical 

data set. Section 5 discusses the impact of overnight jumps and extends the existing range-

based volatility models.  

 

The second part of this research, section 6, discusses the theory of ranking volatility estimates. 

The broad financial literature on ranking volatility estimates is not unanimous on the ultimate 

ranking methodology, but rather proposes several ranking methodologies and no guidelines for 

practical use. Section 6 also proposes a new ranking methodology that is based on a Copula 

function approach, which aims to rank volatility models according to their performance during 

extreme movements. This is a new approach in ranking volatility estimates, which is of 

particular interest to various risk management functions. For robustness of the results, two 

additional and non-overlapping time periods have been included in the analysis.  

 

Next to the analysis of the volatility estimators, the dissertation includes 2 applications of low-

frequency range-based volatility estimators. These applications have been included to provide 

evidence of their applicability with practical examples of an application in Value-at-Risk and 
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portfolio optimization. 

 

To the best of our knowledge none of the previous research papers compared the results of 

various ranking methodologies and included the Tail correlation approach to rank the results. 

This research enriches the literature further with an empirical dataset consisting of intraday 

price observations comprising of 6 East European indices. The presented research gives an 

innovative and complete view on the performance of range-based volatility models on one side 

and ranking methodologies on the other side. The research also includes an application of the 

range-based volatility estimators with Value-at-Risk and an application with portfolio 

optimization.  

 

The results show that both the Parkinson and the Garman and Klass models outperform the 

alternative range-based volatility models in most cases. Unlike the standard deviation or the 

daily squared return, which have, informally, become a market standard, the Parkinson and the 

Garman and Klass models show substantial better results across all the applied ranking 

methodologies. When overnight returns are available and contain information on price 

changes, it becomes beneficial to include this information in the range-based volatility model. 

In these cases the extended models that include overnight returns show overall better results 

than the same models that do not include the overnight price observations. 

 

The choice of the ranking methodology largely depends on the purpose of the volatility 

estimates. For example, rankings based on the Coefficient of Efficiency, a Loss Function 

approach or a Mincer-Zarnowitz regression are all based on the overall performance of the 

range-based volatility models. The disadvantage is that the performance during severe stress 

is often underestimated. This is in particular a disadvantage when a volatility model is required 

that outperforms during periods of severe stress. In that case the Tail Dependence approach is 

recommended, because this methodology ranks the performance of the volatility estimators 

based on the historical extreme volatilities. The results of the Tail Dependence approach 

suggest in most cases a different range-based volatility model then when, for example, a loss 

function approach is used. When neither of the standard ranking methodologies provide a clear 

answer to the ranking question, the Tail Dependence approach can be consulted for advice.   
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The overall results of the ranking methodology suggest different range-based volatility models 

based on various ranking methodologies. Only the Garman-Klass, Parkinson, High-Low, 

Roger-Satchell and Yang-Zhang volatility models are suggested as the best volatility model 

depending on the ranking methodology and the period of time of the applied market. Based on 

the Coefficient of Efficiency either the Garman-Klass, Roger-Satchell or the Yang-Zhang 

model is suggested, while based on the Loss Function approach (either the MSE or the QLike 

function) or the Pearson’s linear correlation ranking methodology, either the Parkinson or the 

Garman-Klass model is suggested across all markets and all time periods. When the Mincer-

Zarnowitz regression or the Tail Dependence ranking methodology is applied, either the 

Garman-Klass, Parkinson or the High-Low volatility model is suggested across all markets. 

Thus in neither case there is a uniform result across the markets. However, the results show a 

clear pattern in which the Garman-Klass and Parkinson volatility models dominate across all 

markets and all periods of time. In most cases it is also beneficial to include overnight returns 

in the volatility estimator. One exception is the .WIG index which shows that the Garman-

Klass model outperforms across all ranking methodologies and all periods of time. 

 

The main hypothesis of this Thesis, H.1, states that amongst the range-based volatility 

estimators there is a least biased estimator of the Realized Volatility of stock market indices. 

In other words, range-based volatility estimators are appropriate models to estimate the ‘true’ 

volatility of stock indices. This hypothesis has been tested with the ranking methodologies 

described in chapter 6. The analysis in chapter 7 shows the results of the ranking exercises, 

while the application of the range based volatility estimators is shown in chapters 8 and 9. In 

total 5 different ranking methodologies have been applied to rank a wide set of volatility 

estimators. The volatility estimators that are non-range based include the daily squared return, 

the close-to-open estimator and the standard deviation. Throughout the ranking analysis neither 

of the 3 non-range based volatility estimators would have been suggested according to the 

ranking performance. Tables 7-21, 7-22 and 7-23 show a summary of the ranking results, 

which clearly indicate that in all ranking methodologies only the range based volatility 

estimators have been selected. It is clear from the results that either the Garman and Klass, 

Parkinson, High-Low, Yang-Zhang or the Roger and Satchell have been ranked highest. This 
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result holds across all investigated indices and across all selected periods of time. The results 

of the two applications in Chapter 8 and 9 also provide additional evidence that support this 

hypothesis. The first application in section 8 tests various VaR models that utilize different 

volatility estimators. In almost all of the tested cases the High-Low volatility estimator could 

not be rejected based on the 1% or 5% significance level. The second application, shown in 

chapter 9, compares different portfolio optimization models and shows that the portfolio 

optimization model that utilizes the Parkinson range based volatility estimator outperforms the 

classical mean-variance model, which is based on the standard deviation, but it also 

outperforms the semi-variance portfolio optimization model. Given the various results of the 

ranking exercises and the two applications on VaR and portfolio optimization we find no 

evidence to reject the main hypothesis, H.1.  

 

The first auxiliary hypothesis, H.1.1 states that range-based volatility estimators differ from 

each other. If this would not be the case it would mean that the selection process is redundant 

and one can simply choose any of the available range-based volatility estimators for estimating 

financial volatility. As a first step in analysing this hypothesis the properties of the range-based 

volatility estimators have been elaborated in chapter 3.2.2. Table 3-2 summarizes the model 

properties of the range-based volatility estimators. Not all range-based volatility estimators 

have the same properties and, in some cases, have unique properties. In addition to the 

elaboration of the properties described in chapter 3.2.2, the results of the ranking methodology 

in chapter 7 also provide no evidence that rejects the auxiliary hypothesis. The summary of the 

results presented in chapter 7.1 through 7.5 show that in most cases the ranking scores are 

unique. There is one exception with the High-Low (eq. 3-8) and Parkinson (eq. 3-9) volatility 

estimators. Since the only difference between the Parkinson and High-Low is a constant, the 

ranking results that are based on, e.g. correlation, can be equal in some cases. Hence, only in 

case of the High-Low and the Parkinson range-based volatility estimator this hypothesis is 

rejected. For the .Beti, .BUX, .PX and .SOFIX the ranking methodologies based on the Tail 

Dependence approach and the Pearson’s linear correlation functions show that when the High-

Low is suggested as the best ranked model also the Parkinson is suggested as both ranking 

results are equal. Adding a constant to the High-Low volatility estimator gives no added value 

according to these ranking methodologies. Therefore following the Tail Dependence and the 
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Pearson’s linear correlation ranking methodologies both the High-Low and Parkinson are 

suggested. In terms of the hypothesis, H.1.1, the High-Low and Parkinson do not differ from 

each other when following the Tail Dependence or the Pearson’s linear correlation ranking 

methodology. Both approaches are based on the correlation between two distributions. 

However in all other cases we find no evidence to reject the hypothesis as the ranking results 

are unique. 

 

The second auxiliary hypothesis, H.1.2, states that the efficiency of classical range-based 

volatility estimators can be increased by including overnight returns. Chapter 5.1 discusses the 

importance of the information carried in overnight returns across all 6 indices. The historical 

database, however, doesn’t include overnight returns for .Beti and .SOFIX, while Figure 5-1 

provides evidence of overnight returns in the .BUX, .CROBEX, .PX and .WIG20 indices. 

Chapter 5.2 introduces the extended range-based volatility estimators, which extends the range 

of the classical range-based volatility estimators discussed in chapter 3.2.2 by simply including 

the overnight returns in the model. The results of the ranking methodologies in chapter 6 show 

that including overnight returns is in general beneficial for the volatility model. Evidence can 

be found in the ranking results based on the .BUX, .CRBX and PX stock market indices. In 

case of .WIG20 there is no support for the overnight returns, while in cases of .Bet and .SOFIX 

the overnight returns were not observed in the database and could therefore not be tested. Only 

.WIG20 provides evidence for rejecting the auxiliary hypothesis, H.1.2, while in all other cases 

there is no support based on the empirical results to reject the auxiliary hypothesis. 

 

The third auxiliary hypothesis, H.1.3, states that range-based volatility estimators are less 

biased compared to the daily squared return or standard deviation. We use the results of the 

ranking analysis in section 7, as in none of the ranking methodologies either the standard 

deviation or the daily squared return have been selected as the best volatility estimator. Both 

the daily squared return as well as the standard deviation show poor performance in the ranking 

analysis. The results of the application with VaR in section 8 and the application in portfolio 

optimization in chapter 9 also provide support of the hypothesis as the standard deviation 

performed poor against various range-based volatility estimators. Given the thorough analysis 

we find no evidence to reject the auxiliary hypothesis. 
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The second main hypothesis, H.2, states that the dependence between the ‘true’ volatility and 

range-based volatility estimators is non-linear and manifests in positive dependence in the tails 

of the distribution. This hypothesis is tested with different volatility ranking methodologies. 

The Tail Dependence approach described in chapter 6.5 explains the basic idea behind this 

ranking methodology. Positive tail correlation coefficients indicate dependence in the tail of 

the distribution, which cannot be detected with the Pearson’s linear correlation function and 

neither with a loss function or a Coefficient of Efficiency approach. Positive tail correlation 

coefficients indicate non-linearity. The results of the Tail Dependence ranking methodology in 

chapter 7.5 show that the tail correlations are in the third quantile and can be considered 

significant. Ignoring this information might result in suboptimal range-based volatility 

estimates. Hence, we find no evidence to reject the second main hypothesis.
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APPENDIX 1: DISTRIBUTION OF REALIZED VOLATILITY ESTIMATES 

 

Figure A- 1 Distribution of Realized Volatility estimates based on 6 East European indices. 
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Figure A- 2 Distribution of Two Time Scale Volatility estimates based on 6 East European indices. 
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APPENDIX 2: DISTRIBUTIONS OF THE RANGE-BASED VOLATILITY ESTIMATES 

 

Figure A- 3 Distribution of volatility estimates based on the .BETI index 
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Figure A- 4 Distribution of volatility estimates based on the .BUX index 



 

         119 

 

Figure A- 5 Distribution of volatility estimates based on the .CRBX index 
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Figure A- 6 Distribution of volatility estimates based on the .PX index. 
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Figure A- 7 Distribution of volatility estimates based on the .SOFIX index. 
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Figure A- 8 Distribution of volatility estimates based on the .WIG index.  
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APPENDIX 3: MINCER ZARNOWITZ REGRESSION RESULTS 

Table A - 1. The Mincer-Zarnowitz regression results for the .BETI index 

Table A - 2. The Mincer-Zarnowitz regression results for the .BUX index. 

.BUX 4.1.2010 - 1.4.2016       4.1.2010 - 15.2.2013       15.2.2013 - 1.4.2016     

  Intercept s.e. Volatility s.e. R^2   Intercept s.e. Volatility s.e. R^2   Intercept s.e. Volatility s.e. R^2 

Daily 0.105 0.002 0.253 0.011 0.266   0.126 0.004 0.234 0.015 0.229   0.090 0.002 0.236 0.013 0.301 

CO 0.100 0.002 0.309 0.012 0.301   0.100 0.004 0.317 0.018 0.287   0.089 0.002 0.251 0.013 0.326 

COC 0.092 0.002 0.317 0.011 0.349   0.106 0.004 0.313 0.017 0.313   0.086 0.002 0.256 0.013 0.327 

HL 0.036 0.002 0.418 0.007 0.722   0.042 0.003 0.426 0.009 0.731   0.042 0.002 0.353 0.009 0.660 

Park 0.036 0.002 0.696 0.011 0.722   0.042 0.003 0.710 0.015 0.731   0.042 0.002 0.587 0.015 0.660 

RS 0.053 0.002 0.624 0.012 0.622   0.058 0.003 0.644 0.016 0.666   0.061 0.003 0.480 0.020 0.433 

GK 0.032 0.002 0.741 0.011 0.752   0.039 0.003 0.743 0.015 0.765   0.037 0.002 0.653 0.017 0.656 

HL 0.037 0.002 0.395 0.006 0.714   0.043 0.003 0.395 0.009 0.702   0.040 0.002 0.354 0.009 0.659 

Park* 0.046 0.002 0.565 0.011 0.651   0.056 0.004 0.541 0.016 0.607   0.040 0.002 0.577 0.016 0.641 

RS* 0.056 0.002 0.531 0.011 0.599   0.061 0.004 0.529 0.015 0.605   0.060 0.003 0.471 0.020 0.420 

GK* 0.045 0.002 0.589 0.011 0.670   0.053 0.004 0.564 0.015 0.638   0.036 0.003 0.631 0.018 0.627 

YZ 0.041 0.004 0.574 0.018 0.403   0.046 0.006 0.561 0.025 0.396   0.043 0.007 0.543 0.045 0.157 

.BETI 4.1.2010 - 1.4.2016       4.1.2010 - 15.2.2013       15.2.2013 - 1.4.2016     

 Intercept s.e. Volatility s.e. R^2  Intercept s.e. Volatility s.e. R^2  Intercept s.e. Volatility s.e. R^2 

Daily 0.079 0.002 0.466 0.013 0.459  0.103 0.004 0.463 0.018 0.459  0.070 0.002 0.305 0.014 0.374 

CO 0.079 0.002 0.466 0.013 0.459  0.100 0.004 0.464 0.018 0.459  0.070 0.002 0.305 0.014 0.374 

COC 0.079 0.002 0.466 0.013 0.459  0.103 0.004 0.464 0.018 0.459  0.070 0.002 0.305 0.014 0.374 

HL 0.022 0.002 0.541 0.007 0.788  0.031 0.003 0.562 0.009 0.827  0.041 0.002 0.348 0.010 0.607 

Park 0.022 0.002 0.900 0.012 0.788  0.031 0.003 0.935 0.015 0.827  0.041 0.002 0.579 0.017 0.607 

RS 0.045 0.003 0.792 0.018 0.541  0.062 0.004 0.824 0.026 0.566  0.055 0.002 0.458 0.020 0.384 

GK 0.014 0.002 1.026 0.014 0.775  0.018 0.003 1.094 0.018 0.830  0.040 0.002 0.607 0.019 0.561 

HL 0.022 0.002 0.541 0.007 0.788  0.031 0.003 0.562 0.009 0.827  0.041 0.002 0.348 0.010 0.607 

Park* 0.022 0.002 0.900 0.012 0.788  0.031 0.003 0.935 0.015 0.827  0.041 0.002 0.579 0.017 0.607 

RS* 0.045 0.003 0.792 0.018 0.541  0.062 0.004 0.824 0.026 0.566  0.055 0.002 0.458 0.020 0.384 

GK* 0.014 0.002 1.026 0.014 0.775  0.018 0.003 1.094 0.018 0.830  0.040 0.002 0.607 0.019 0.561 

YZ 0.020 0.004 0.840 0.023 0.462  0.035 0.006 0.837 0.033 0.449  0.052 0.004 0.419 0.035 0.152 
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Table A - 3. The Mincer-Zarnowitz regression results for the .CRBX index 

.CRBX 4.1.2010 - 1.4.2016       4.1.2010 - 15.2.2013       15.2.2013 - 1.4.2016     

  Intercept s.e. Volatility s.e. R^2   Intercept s.e. Volatility s.e. R^2   Intercept s.e. Volatility s.e. R^2 

Daily 0.058 0.002 0.467 0.015 0.372   0.064 0.003 0.491 0.023 0.378   0.060 0.001 0.273 0.018 0.234 

CO 0.000 0.002 0.440 0.015 0.343   0.000 0.003 0.450 0.022 0.339   0.060 0.001 0.274 0.018 0.227 

COC 0.063 0.002 0.397 0.015 0.313   0.073 0.003 0.392 0.022 0.297   0.060 0.001 0.279 0.018 0.231 

HL 0.020 0.002 0.539 0.010 0.640   0.021 0.003 0.547 0.015 0.621   0.028 0.002 0.443 0.014 0.566 

Park 0.020 0.002 0.897 0.017 0.640   0.021 0.003 0.911 0.025 0.621   0.028 0.002 0.737 0.023 0.566 

RS 0.035 0.002 0.748 0.021 0.445   0.044 0.004 0.728 0.031 0.409   0.035 0.002 0.641 0.027 0.425 

GK 0.016 0.002 0.977 0.020 0.613   0.018 0.003 0.984 0.030 0.582   0.022 0.002 0.839 0.025 0.588 

HL 0.026 0.002 0.494 0.010 0.589   0.030 0.003 0.488 0.016 0.556   0.028 0.002 0.444 0.014 0.569 

Park* 0.034 0.002 0.710 0.018 0.512   0.043 0.003 0.675 0.026 0.463   0.028 0.002 0.733 0.023 0.566 

RS* 0.046 0.002 0.597 0.020 0.360   0.059 0.004 0.547 0.029 0.310   0.034 0.002 0.653 0.020 0.441 

GK* 0.034 0.002 0.737 0.020 0.468   0.045 0.003 0.686 0.029 0.409   0.022 0.002 0.832 0.025 0.589 

YZ 0.039 0.003 0.594 0.028 0.220   0.052 0.005 0.527 0.042 0.168   0.029 0.005 0.666 0.064 0.123 

 

Table A - 4. The Mincer-Zarnowitz regression results for the .PX index. 

.PX 4.1.2010 - 1.4.2016   4.1.2010 - 15.2.2013       15.2.2013 - 1.4.2016     

  Intercept s.e. Volatility s.e. R^2   Intercept s.e. Volatility s.e. R^2   Intercept s.e. Volatility s.e. R^2 

Daily 0.000 0.002 0.353 0.012 0.371   0.082 0.003 0.413 0.017 0.417   0.080 0.002 0.197 0.011 0.278 

CO 0.000 0.002 0.297 0.015 0.195   0.000 0.004 0.358 0.025 0.204   0.081 0.002 0.200 0.012 0.271 

COC 0.069 0.002 0.402 0.012 0.400   0.066 0.004 0.503 0.019 0.467   0.080 0.002 0.202 0.012 0.273 

HL 0.037 0.003 0.433 0.011 0.485   0.041 0.004 0.499 0.017 0.537   0.047 0.002 0.291 0.010 0.537 

Park 0.037 0.003 0.721 0.019 0.485   0.041 0.004 0.831 0.028 0.537   0.047 0.002 0.484 0.016 0.537 

RS 0.059 0.003 0.598 0.020 0.362   0.069 0.004 0.686 0.028 0.429   0.063 0.002 0.379 0.020 0.307 

GK 0.035 0.003 0.789 0.020 0.495   0.042 0.004 0.883 0.028 0.551   0.043 0.002 0.549 0.019 0.518 

HL 0.025 0.002 0.472 0.009 0.637   0.024 0.003 0.537 0.012 0.712   0.047 0.002 0.291 0.010 0.537 

Park* 0.024 0.002 0.745 0.011 0.729   0.023 0.003 0.808 0.015 0.787   0.046 0.002 0.485 0.016 0.538 

RS* 0.039 0.002 0.690 0.013 0.653   0.040 0.003 0.749 0.016 0.741   0.061 0.002 0.390 0.020 0.320 

GK* 0.023 0.002 0.793 0.012 0.749   0.026 0.003 0.832 0.015 0.802   0.042 0.002 0.551 0.010 0.522 

YZ 0.025 0.003 0.709 0.023 0.388   0.036 0.005 0.688 0.031 0.381   0.037 0.005 0.544 0.041 0.183 
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Table A - 5. The Mincer-Zarnowitz regression results for the .SOFIX index. 

.SOFIX 4.1.2010 - 1.4.2016       4.1.2010 - 15.2.2013       15.2.2013 - 1.4.2016     

  Intercept s.e. Volatility s.e. R^2   Intercept s.e. Volatility s.e. R^2   Intercept s.e. Volatility s.e. R^2 

Daily 0.087 0.002 0.417 0.014 0.349   0.093 0.003 0.374 0.017 0.371   0.080 0.003 0.469 0.024 0.333 

CO 0.000 0.002 0.416 0.014 0.348   0.000 0.003 0.373 0.017 0.369   0.080 0.003 0.469 0.024 0.333 

COC 0.087 0.002 0.417 0.014 0.349   0.093 0.003 0.374 0.017 0.370   0.080 0.003 0.469 0.024 0.333 

HL 0.035 0.002 0.521 0.000 0.739   0.042 0.002 0.471 0.010 0.720   0.026 0.002 0.581 0.012 0.764 

Park 0.035 0.002 0.868 0.013 0.739   0.042 0.002 0.784 0.017 0.720   0.026 0.002 0.968 0.019 0.764 

RS 0.053 0.002 0.725 0.015 0.599   0.061 0.003 0.654 0.021 0.547   0.046 0.003 0.796 0.021 0.645 

GK 0.032 0.002 0.919 0.010 0.742   0.038 0.002 0.845 0.010 0.717   0.026 0.002 1.002 0.020 0.767 

HL 0.035 0.002 0.521 0.000 0.739   0.042 0.002 0.471 0.010 0.720   0.026 0.002 0.581 0.012 0.764 

Park* 0.035 0.002 0.866 0.013 0.738   0.043 0.002 0.781 0.017 0.718   0.026 0.002 0.968 0.019 0.764 

RS* 0.053 0.002 0.723 0.010 0.597   0.061 0.003 0.651 0.021 0.544   0.046 0.003 0.796 0.020 0.645 

GK* 0.032 0.002 0.916 0.010 0.739   0.039 0.002 0.840 0.019 0.714   0.026 0.002 1.002 0.020 0.767 

YZ 0.047 0.004 0.686 0.031 0.244   0.056 0.006 0.615 0.044 0.197   0.040 0.005 0.738 0.044 0.275 

 

Table A - 6. The Mincer-Zarnowitz regression results for the .WIG index. 
.WIG 4.1.2010 - 1.4.2016       4.1.2010 - 15.2.2013       15.2.2013 - 1.4.2016     

  Intercept s.e. Volatility s.e. R^2   Intercept s.e. Volatility s.e. R^2   Intercept s.e. Volatility s.e. R^2 

Daily 0.100 0.002 0.246 0.011 0.233   0.104 0.003 0.267 0.017 0.244   0.097 0.002 0.202 0.014 0.207 

CO 0.000 0.002 0.334 0.012 0.325   0.000 0.003 0.361 0.018 0.338   0.091 0.002 0.282 0.015 0.302 

COC 0.084 0.002 0.328 0.012 0.342   0.085 0.004 0.353 0.017 0.361   0.086 0.003 0.272 0.016 0.284 

HL 0.034 0.002 0.441 0.006 0.749   0.034 0.002 0.454 0.009 0.783   0.038 0.002 0.405 0.010 0.670 

Park 0.034 0.002 0.734 0.011 0.749   0.034 0.002 0.756 0.014 0.783   0.038 0.002 0.674 0.017 0.670 

RS 0.047 0.002 0.665 0.013 0.640   0.049 0.003 0.685 0.016 0.695   0.051 0.003 0.599 0.021 0.513 

GK 0.030 0.002 0.780 0.011 0.770   0.031 0.002 0.791 0.014 0.809   0.032 0.002 0.738 0.018 0.677 

HL 0.034 0.002 0.412 0.007 0.715   0.033 0.003 0.424 0.009 0.751   0.039 0.003 0.381 0.011 0.624 

Park* 0.044 0.002 0.565 0.011 0.611   0.043 0.003 0.578 0.015 0.642   0.048 0.003 0.529 0.018 0.518 

RS* 0.050 0.002 0.541 0.012 0.567   0.048 0.003 0.559 0.016 0.622   0.056 0.003 0.489 0.021 0.421 

GK* 0.042 0.002 0.586 0.012 0.619   0.041 0.003 0.595 0.015 0.659   0.045 0.003 0.556 0.020 0.506 

YZ 0.075 0.003 0.275 0.010 0.320   0.076 0.004 0.292 0.014 0.372   0.081 0.004 0.217 0.016 0.188 
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