Title Metode strojnog učenja u predviđanju profitabilnosti kupaca
Title (english) Machine learning methods in customer profitability prediction
Author Ivica Ćorić
Mentor Mirjana Pejić Bach (mentor) MBZ: 213892
Committee member Vanja Bevanda (predsjednik povjerenstva) MBZ: 261724
Granter University of Split Faculty of economics Split Split
Defense date and country 2017-02-13, Croatia
Scientific / art field, discipline and subdiscipline SOCIAL SCIENCES Economics Quantitative Economics
Universal decimal classification (UDC ) 330 - Economics. Economic science
Abstract Suvremeni trendovi izučavanja profitabilnosti kupaca doveli su do saznanja da troškovi proizvoda čine samo jedan dio troškova poslovnog odnosa na relaciji poduzeće-kupac. Ovaj odnos je opterećen i različitim troškovima koje generiraju poslovne aktivnosti u potpori ove relacije. Alokacija ovih troškova dovodi do zaključka kako se kupci, sukladno svojim karakteristikama, dosta razlikuju u veličini pripadajućih im troškova, te da svaka novčana jedinica prihoda pojedinačnog kupca ne učestvuje jednako u profitu poduzeća.
Raznovrsnost spomenutih troškova i alociranje na pojedinačne kupce omogućeno je pojavom novih metoda obračuna troškova. Na osnovama ovih metoda, razvijen je model izračuna stvarnih pokazatelja profitabilnosti kupaca. Model identificira skup varijabli internog i eksternog okruženja bitnih za izračun prihoda, troškova i profita po pojedinom kupcu. Izlazni rezultati modela su mjere profitabilnosti pojedinačnog kupca. Empirijska vrijednost ovih pokazatelja je osnova za poduzimanje menadžerskih akcija usmjerenih na upravljanje kupcima i okruženjem na osnovu podataka iz prošlosti. Ipak, cilj menadžmenta nije samo reaktivno, već proaktivno djelovanje na bazu kupaca.
Proaktivno djelovanje zasniva se na rezultatima modela koji posjeduje i prediktivne sposobnosti. Osnova prediktivne sposobnosti modela pronađena je u primjeni tehnika i metoda multivarijacijske statističke analize i strojnog učenja. Ulazne varijable modela su i nefinancijske, pored onih čisto financijskih, a koje su po svojoj prirodi uglavnom nepogodne za obradu putem tradicionalnih statističkih metoda. Metode multivarijacijske statističke analize nadilaze neke od ovih nedostataka i mogu se djelomično upotrijebiti u analiziranju podataka o profitabilnosti kupaca. Metode strojnog učenja mogu otkriti skriveno znanje i obrasce ponašanja kupaca iz retrospektivnih analiza uzimajući u razmatranje, pored linearnih varijabli, nelinearne i nefinancijske elemente. Sposobnost da aproksimativno opišu bilo koju neprekinutu funkciju, čini ih dobrim izborom metoda za predviđanje profitabilnosti kupaca.
Cilj ovog rada jeste izgradnja modela za mjerenje tekuće i predviđanje buduće profitabilnosti pojedinačnog kupca uz upotrebu metoda strojnog učenja i multivarijacijske statističke analize. Pri tome, rad uspoređuje odabrane metode strojnog učenja i multivarijacijske analize s ciljem utvrđivanja pogodnijih metoda za namjeru predviđanja profitabilnosti kupaca.
Abstract (english) Contemporary trends in customer profitability studies have led to the awareness that product costs are only one part of the business-customer relationship costs. This relationship is burdened with the various costs generated by business activities that support this relationship. Allocation of these costs leads to the conclusion that buyers, in accordance with their characteristics, differ greatly in the size of the associated costs and that each monetary unit of the individual customer's income does not participate equally in the company's profits.
The diversity of aforementioned costs and its allocation to individual customers is enabled by the introduction of new cost accounting methods. Based on these methods, a model of calculation of actual customer profitability indicators has been developed. The model identifies a set of variables for internal and external environment that are important for calculating revenue, costs, and profits per each customer. The outcomes of the model are profitability measures of the individual customer. The empirical value of these indicators is the basis for taking management actions focused on managing the customers based on past data. However, the management goal is not only reactive but proactive acting onto the customer database.
Proactive action is based on the results of the model that holds even predictive capabilities. The basis for predictive ability of the model was found in the application of techniques and methods of multivariate statistical analysis and machine learning. The input variables of the model are also non-financial, in addition to purely financial ones, which are by their nature mostly unsuitable for processing using traditional statistical methods. Methods of Multivariate Statistical Analysis exceed some of these deficiencies and may be partially used to analyze data on customer profitability. Machine learning methods can reveal hidden knowledge and patterns of customer behavior from retrospective analyzes by taking into consideration nonlinear and nonfinancial elements in addition to linear variables. The ability to approximately describe any uninterrupted function makes them a good choice of methods for predicting customer profitability.
The aim of this paper is to build a model for measuring current and predicting the future profitability of an individual customer by using machine learning methods and Multivariate Statistical Analysis. In that process, the paper compares selected methods of machine learning and multivariate analysis with the purpose of identifying more suitable methods for predicting customer profitability.
Keywords
metode strojnog učenja
predviđanje profitabilnosti kupaca
Keywords (english)
machine learning methods
predicting customer profitability
Language croatian
URN:NBN urn:nbn:hr:124:612459
Study programme Title: Postgraduate doctoral study programme in Economics and Business Study programme type: university Study level: postgraduate Academic / professional title: doktor/doktorica znanosti, područje društvenih znanosti, polje ekonomija (doktor/doktorica znanosti, područje društvenih znanosti, polje ekonomija)
Type of resource Text
File origin Born digital
Access conditions Open access
Terms of use
Created on 2018-03-13 08:37:50